Home/Research/Brain Training

Brain Training: Neurofeedback

Training protocols, frequency bands, and evidence-based neurofeedback approaches.

📚

Research Library

We've curated 366 research papers for this use case. Dr. Hill and the Peak Brain team are reviewing and summarizing these papers to provide accessible, actionable insights.

Citations and abstracts shown below. Detailed summaries, key findings, and clinical applications will be added as reviews are completed.

Research Citations

Page 1 of 8Next →
Showing 1-50 of 366 papers

Individual brain regulation as learned via neurofeedback is related to affective changes in adolescents with autism spectrum disorder

Klöbl, Manfred, Prillinger, Karin, Diehm, Robert, Doganay, Kamer, Lanzenberger, Rupert, Poustka, Luise, Plener, Paul, Konicar, Lilian (2023) · Child and Adolescent Psychiatry and Mental Health

Abstract Background Emotions often play a role in neurofeedback (NF) regulation strategies. However, investigations of the relationship between the induced neuronal changes and improvements in affective domains are scarce in electroencephalography-based studies. Thus, we extended the findings of the first study on slow cortical potential (SCP) NF in autism spectrum disorder (ASD) by linking affective changes to whole-brain activity during rest and regulation. Methods Forty-one male adolescents with ASD were scanned twice at rest using functional magnetic resonance imaging. Between scans, half underwent NF training, whereas the other half received treatment as usual. Furthermore, parents reported on their child’s affective characteristics at each measurement. The NF group had to alternatingly produce negative and positive SCP shifts during training and was additionally scanned using functional magnetic resonance imaging while applying their developed regulation strategies. Results No significant treatment group-by-time interactions in affective or resting-state measures were found. However, we found increases of resting activity in the anterior cingulate cortex and right inferior temporal gyrus as well as improvements in affective characteristics over both groups. Activation corresponding to SCP differentiation in these regions correlated with the affective improvements. A further correlation was found for Rolandic operculum activation corresponding to positive SCP shifts. There were no significant correlations with the respective achieved SCP regulation during NF training. Conclusion SCP NF in ASD did not lead to superior improvements in neuronal or affective functioning compared to treatment as usual. However, the affective changes might be related to the individual strategies and their corresponding activation patterns as indicated by significant correlations on the whole-brain level. Trial registration This clinical trial was registered at drks.de (DRKS00012339) on 20th April, 2017.

View Full Paper →

Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke

Tetsuka, Masayuki, Sakurada, Takeshi, Matsumoto, Mayuko, Nakajima, Takeshi, Morita, Mitsuya, Fujimoto, Shigeru, Kawai, Kensuke (2023) · Frontiers in Systems Neuroscience

This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient’s clinical background such as Fugl–Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.

View Full Paper →

Functional disorders - new proposals for definition, psychosomatics, somatization

Czachowski, Sławomir (2023) · Psychiatria Polska

Functional Disorders are common medical problems both in primary and in secondary health care. The mechanisms that cause symptoms such as primary pain, fatigue, dizziness are still unknown. Various classifications, including ICD-10 or DSM-5, describe these conditions differently, and new proposals are being developed e.g. in ICD-11, RDoC. Many controversies are evoked by lack of unequivocal explanatory theory. The early psychoanalytical concept has been modified by other explanations, such as immunological abnormalities, dysfunction of vegetative system and HPA axis, central sensitization, diverted processes of perception or predictive processes within cognitive homeostasis dysregulation. Insufficient scientific evidence makes therapies unsuccessful and justifies further study. Psychotherapy, pharmacology and complementary medicine are supplemented by new experimental methods of treatment connected with progress in neuroscience. The recently developed non-invasive Transcranial Direct Current Stimulation (tDCS), Transcranial Magnetic Stimulation (TMS) and - neurofeedback (EEG-NF), based on EEG registration, are undergoing tests. Applying complex mathematical algorithms to localized bioelectrical signal sources makes it possible to modulate and reshape connections of neuronal networks within specific cortex areas. This article presents the current state of knowledge concerning functional disorders, highlighting the ways in which different definitions of FD have an impact on approaches to treatment.

View Full Paper →

Mental imagery content is associated with disease severity and specific brain functional connectivity changes in patients with Parkinson's disease

Cherry, Jared, Kamel, Serageldin, Elfil, Mohamed, Aravala, Sai S., Bayoumi, Ahmed, Patel, Amar, Sinha, Rajita, Tinaz, Sule (2023) · Brain Imaging and Behavior

Mental imagery is the mental re-creation of perceptual experiences, events and scenarios, and motor acts. In our previous study, we assessed whether motor imagery (MI) training combined with functional magnetic resonance imaging-based neurofeedback could improve the motor function of nondemented subjects with mild Parkinson's disease (PD) (N = 22). We used visual imagery (VI) (e.g., of scenes or events, but not of self-movements) training without neurofeedback for the control group (N = 22). Notably, both groups showed significant and comparable improvement in motor function after four weeks of daily imagery practice. In this study, we further examined the neural correlates of the motor enhancement as a result of the VI training by analyzing the self-reported VI content during daily practice and relating its quality to the functional connectivity characteristics of the same subjects. We demonstrated that the VI practice encompassed multisensory, spatial, affective, and executive processes all of which are also important for motor function in real life. Subjects with worse global disease severity also showed poorer quality of the VI content. Finally, the quality of the VI content showed significant positive correlations with the functional connectivity changes during the VI tasks in brain areas supporting visuospatial and sensorimotor processes. Our findings suggest that mental imagery training combining VI and MI may enhance motor function in patients with mild PD, and more broadly, underline the importance of incorporating self-reports of thoughts and experiences in neuroimaging studies that examine the brain mechanisms of complex cognitive processes especially in neuropsychiatric patient populations.

View Full Paper →

Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review

Nakamura-Palacios, Ester Miyuki, Falçoni Júnior, Aldren Thomazini, Anders, Quézia Silva, De Paula, Lucas Dos Santos Pereira, Zottele, Mariana Zamprogno, Ronchete, Christiane Furlan, Lirio, Pedro Henrique Cassaro (2023) · Frontiers in Human Neuroscience

To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4–8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.

View Full Paper →

Cognitive training based on functional near-infrared spectroscopy neurofeedback for the elderly with mild cognitive impairment: a preliminary study

Lee, Ilju, Kim, Dohyun, Kim, Sehwan, Kim, Hee Jung, Chung, Un Sun, Lee, Jung Jae (2023) · Frontiers in Aging Neuroscience

Introduction Mild cognitive impairment (MCI) is often described as an intermediate stage of the normal cognitive decline associated with aging and dementia. There is a growing interest in various non-pharmacological interventions for MCI to delay the onset and inhibit the progressive deterioration of daily life functions. Previous studies suggest that cognitive training (CT) contributes to the restoration of working memory and that the brain-computer-interface technique can be applied to elicit a more effective treatment response. However, these techniques have certain limitations. Thus, in this preliminary study, we applied the neurofeedback paradigm during CT to increase the working memory function of patients with MCI. Methods Near-infrared spectroscopy (NIRS) was used to provide neurofeedback by measuring the changes in oxygenated hemoglobin in the prefrontal cortex. Thirteen elderly MCI patients who received CT-neurofeedback sessions four times on the left dorsolateral prefrontal cortex (dlPFC) once a week were recruited as participants. Results Compared with pre-intervention, the activity of the targeted brain region increased when the participants first engaged in the training; after 4 weeks of training, oxygen saturation was significantly decreased in the left dlPFC. The participants demonstrated significantly improved working memory compared with pre-intervention and decreased activity significantly correlated with improved cognitive performance. Conclusion Our results suggest that the applications for evaluating brain-computer interfaces can aid in elucidation of the subjective mental workload that may create additional or decreased task workloads due to CT.

View Full Paper →

Magnetoencephalographic neurofeedback training decreasesβ-low-γphase-amplitude coupling of the motor cortex of healthy adults: a double-blinded randomized crossover feasibility study

Izutsu, Nobuyuki, Yanagisawa, Takufumi, Fukuma, Ryohei, Kishima, Haruhiko (2023) · Journal of Neural Engineering

Objective.The coupling between the beta (13-30 Hz) phase and low gamma (50-100 Hz) amplitude in the motor cortex is thought to regulate motor performance. Abnormal phase-amplitude coupling (PAC) of beta-low gamma (β-low-γPAC) is associated with motor symptoms of Parkinson's disease. However, the causal relationship betweenβ-low-γPAC and motor performance in healthy subjects is unknown. We hypothesized that healthy subjects could change the strength of theβ-low-γPAC in the resting state by neurofeedback training (NFT) to control theβ-low-γPAC, such that the motor performance changes in accordance with the changes inβ-low-γPAC in the resting state.Approach.We developed an NFT to control the strength of theβ-low-γPAC in the motor cortex, which was evaluated by magnetoencephalography (MEG) using a current source estimation technique. Twenty subjects were enrolled in a double-blind randomized crossover trial to test the feasibility of the MEG NFT. In the NFT for 2 d, the subjects were instructed to reduce the size of a black circle whose radius was proportional (down-training) or inversely proportional (up-training) to the strength of theβ-low-γPAC. The reaction times (RTs) to press a button according to some cues were evaluated before and after training. This study was registered at ClinicalTrials.gov (NCT03837548) and UMIN-CTR (UMIN000032937).Main results.Theβ-low-γPAC during the resting state was significantly decreased after down-training, although not significantly after up-training. RTs tended to decrease after both trainings, however the differences were not statistically significant. There was no significant correlation between the changes inβ-low-γPAC during rest and RTs.Significance.The proposed MEG NFT was demonstrated to change theβ-low-γPAC of the motor cortex in healthy subjects. However, a relationship between PAC and RT has not yet been demonstrated.

View Full Paper →

Frontoparietal Dysconnection in Covert Bipedal Activity for Enhancing the Performance of the Motor Preparation-Based Brain-Computer Interface

Phang, Chun-Ren, Chen, Chia-Hsin, Cheng, Yuan-Yang, Chen, Yi-Jen, Ko, Li-Wei (2023) · IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society

Motor-based brain-computer interfaces (BCIs) were developed from the brain signals during motor imagery (MI), motor preparation (MP), and motor execution (ME). Motor-based BCIs provide an active rehabilitation scheme for post-stroke patients. However, BCI based solely on MP was rarely investigated. Since MP is the precedence phase before MI or ME, MP-BCI could potentially detect brain commands at an earlier state. This study proposes a bipedal MP-BCI system, which is actuated by the reduction in frontoparietal connectivity strength. Three substudies, including bipedal classification, neurofeedback, and post-stroke analysis, were performed to validate the performance of our proposed model. In bipedal classification, functional connectivity was extracted by Pearson's correlation model from electroencephalogram (EEG) signals recorded while the subjects were performing MP and MI. The binary classification of MP achieved short-lived peak accuracy of 73.73(±7.99)% around 200-400 ms post-cue. The peak accuracy was found synchronized to the MP-related potential and the decrement in frontoparietal connection strength. The connection strengths of the right frontal and left parietal lobes in the alpha range were found negatively correlated to the classification accuracy. In the subjective neurofeedback study, the majority of subjects reported that motor preparation instead of the motor imagery activated the frontoparietal dysconnection. Post-stroke study also showed that patients exhibit lower frontoparietal connections compared to healthy subjects during both MP and ME phases. These findings suggest that MP reduced alpha band functional frontoparietal connectivity and the EEG signatures of left and right foot MP could be discriminated more effectively during this phase. A neurofeedback paradigm based on the frontoparietal network could also be utilized to evaluate post-stroke rehabilitation training.

View Full Paper →

Neurocircuit models of obsessive-compulsive disorder: limitations and future directions for research

Shephard, Elizabeth, Batistuzzo, Marcelo C., Hoexter, Marcelo Q., Stern, Emily R., Zuccolo, Pedro F., Ogawa, Carolina Y., Silva, Renata M., Brunoni, Andre R., Costa, Daniel L., Doretto, Victoria, Saraiva, Leonardo, Cappi, Carolina, Shavitt, Roseli G., Simpson, H. Blair, van den Heuvel, Odile A., Miguel, Euripedes C. (2022) · Revista Brasileira De Psiquiatria (Sao Paulo, Brazil: 1999)

Obsessive-compulsive disorder (OCD) is a common psychiatric condition classically characterized by obsessions (recurrent, intrusive and unwanted thoughts) and compulsions (excessive, repetitive and ritualistic behaviors or mental acts). OCD is heterogeneous in its clinical presentation and not all patients respond to first-line treatments. Several neurocircuit models of OCD have been proposed with the aim of providing a better understanding of the neural and cognitive mechanisms involved in the disorder. These models use advances in neuroscience and findings from neuropsychological and neuroimaging studies to suggest links between clinical profiles that reflect the symptoms and experiences of patients and dysfunctions in specific neurocircuits. Several models propose that treatments for OCD could be improved if directed to specific neurocircuit dysfunctions, thereby restoring efficient neurocognitive function and ameliorating the symptomatology of each associated clinical profile. Yet, there are several important limitations to neurocircuit models of OCD. The purpose of the current review is to highlight some of these limitations, including issues related to the complexity of brain and cognitive function, the clinical presentation and course of OCD, etiological factors, and treatment methods proposed by the models. We also provide suggestions for future research to advance neurocircuit models of OCD and facilitate translation to clinical application.

View Full Paper →

Possible Mechanisms Underlying Neurological Post-COVID Symptoms and Neurofeedback as a Potential Therapy

Orendáčová, Mária, Kvašňák, Eugen (2022) · Frontiers in Human Neuroscience

Theoretical considerations related to neurological post-COVID complications have become a serious issue in the COVID pandemic. We propose 3 theoretical hypotheses related to neurological post-COVID complications. First, pathophysiological processes responsible for long-term neurological complications caused by COVID-19 might have 2 phases: (1) Phase of acute Sars-CoV-2 infection linked with the pathogenesis responsible for the onset of COVID-19-related neurological complications and (2) the phase of post-acute Sars-CoV-2 infection linked with the pathogenesis responsible for long-lasting persistence of post-COVID neurological problems and/or exacerbation of another neurological pathologies. Second, post-COVID symptoms can be described and investigated from the perspective of dynamical system theory exploiting its fundamental concepts such as system parameters, attractors and criticality. Thirdly, neurofeedback may represent a promising therapy for neurological post-COVID complications. Based on the current knowledge related to neurofeedback and what is already known about neurological complications linked to acute COVID-19 and post-acute COVID-19 conditions, we propose that neurofeedback modalities, such as functional magnetic resonance-based neurofeedback, quantitative EEG-based neurofeedback, Othmer’s method of rewarding individual optimal EEG frequency and heart rate variability-based biofeedback, represent a potential therapy for improvement of post-COVID symptoms.

View Full Paper →

Volitional Control of Brain Motor Activity and Its Therapeutic Potential

Girges, Christine, Vijiaratnam, Nirosen, Zrinzo, Ludvic, Ekanayake, Jinendra, Foltynie, Thomas (2022) · Neuromodulation: Journal of the International Neuromodulation Society

BACKGROUND: Neurofeedback training is a closed-loop neuromodulatory technique in which real-time feedback of brain activity and connectivity is provided to the participant for the purpose of volitional neural control. Through practice and reinforcement, such learning has been shown to facilitate measurable changes in brain function and behavior. OBJECTIVES: In this review, we examine how neurofeedback, coupled with motor imagery training, has the potential to improve or normalize motor function in neurological diseases such as Parkinson disease and chronic stroke. We will also explore neurofeedback in the context of brain-machine interfaces (BMIs), discussing both noninvasive and invasive methods which have been used to power external devices (eg, robot hand orthosis or exoskeleton) in the context of motor neurorehabilitation. CONCLUSIONS: The published literature provides mounting high-quality evidence that neurofeedback and BMI control may lead to clinically relevant changes in brain function and behavior.

View Full Paper →

Self-regulation of the posterior cingulate cortex with real-time fMRI neurofeedback augmented mindfulness training in healthy adolescents: A nonrandomized feasibility study

Kirlic, Namik, Cohen, Zsofia P., Tsuchiyagaito, Aki, Misaki, Masaya, McDermott, Timothy J., Aupperle, Robin L., Stewart, Jennifer L., Singh, Manpreet K., Paulus, Martin P., Bodurka, Jerzy (2022) · Cognitive, Affective & Behavioral Neuroscience

Mindfulness training (MT) promotes the development of one's ability to observe and attend to internal and external experiences with objectivity and nonjudgment with evidence to improve psychological well-being. Real-time functional MRI neurofeedback (rtfMRI-nf) is a noninvasive method of modulating activity of a brain region or circuit. The posterior cingulate cortex (PCC) has been hypothesized to be an important hub instantiating a mindful state. This nonrandomized, single-arm study examined the feasibility and tolerability of training typically developing adolescents to self-regulate the posterior cingulate cortex (PCC) using rtfMRI-nf during MT. Thirty-four adolescents (mean age: 15 years; 14 females) completed the neurofeedback augmented mindfulness training task, including Focus-on-Breath (MT), Describe (self-referential thinking), and Rest conditions, across three neurofeedback and two non-neurofeedback runs (Observe, Transfer). Self-report assessments demonstrated the feasibility and tolerability of the task. Neurofeedback runs differed significantly from non-neurofeedback runs for the Focus-on-Breath versus Describe contrast, characterized by decreased activity in the PCC during the Focus-on-Breath condition (z = -2.38 to -6.27). MT neurofeedback neural representation further involved the medial prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, posterior insula, hippocampus, and amygdala. State awareness of physical sensations increased following rtfMRI-nf and was maintained at 1-week follow-up (Cohens' d = 0.69). Findings demonstrate feasibility and tolerability of rtfMRI-nf in healthy adolescents, replicates the role of PCC in MT, and demonstrate a potential neuromodulatory mechanism to leverage and streamline the learning of mindfulness practice. ( ClinicalTrials.gov identifier #NCT04053582; August 12, 2019).

View Full Paper →

Efficacy of bio- and neurofeedback for depression: a meta-analysis

Fernández-Alvarez, J., Grassi, M., Colombo, D., Botella, C., Cipresso, P., Perna, G., Riva, G. (2022) · Psychological Medicine

BACKGROUND: For many years, biofeedback and neurofeedback have been implemented in the treatment of depression. However, the effectiveness of these techniques on depressive symptomatology is still controversial. Hence, we conducted a meta-analysis of studies extracted from PubMed, Scopus, Web of Science and Embase. METHODS: Two different strings were considered for each of the two objectives of the study: A first group comprising studies patients with major depressive disorder (MDD) and a second group including studies targeting depressive symptomatology reduction in other mental or medical conditions. RESULTS: In the first group of studies including patients with MDD, the within-group analyses yielded an effect size of Hedges' g = 0.717, while the between-group analysis an effect size of Hedges' g = 1.050. Moderator analyses indicate that treatment efficacy is only significant when accounting for experimental design, in favor of randomized controlled trials (RCTs) in comparison to non RCTs, whereas the type of neurofeedback, trial design, year of publication, number of sessions, age, sex and quality of study did not influence treatment efficacy. In the second group of studies, a small but significant effect between groups was found (Hedges' g = 0.303) in favor of bio- and neurofeedback against control groups. Moderator analyses revealed that treatment efficacy was not moderated by any of the sociodemographic and clinical variables. CONCLUSIONS: Heart rate variability (HRV) biofeedback and neurofeedback are associated with a reduction in self-reported depression. Despite the fact that the field has still a large room for improvement in terms of research quality, the results presented in this study suggests that both modalities may become relevant complementary strategies for the treatment of MDD and depressive symptomatology in the coming years.

View Full Paper →

EEG-heart rate connectivity changes after sensorimotor rhythm neurofeedback training: Ancillary study

Alba, Guzmán, Terrasa, Juan L., Vila, Jaime, Montoya, Pedro, Muñoz, Miguel A. (2022) · Neurophysiologie Clinique = Clinical Neurophysiology

OBJECTIVES: Neurofeedback can induce long-term changes in brain functional connectivity, but its influence on the connectivity between different physiological systems is unknown. The present paper is an ancillary study of a previous paper that confirmed the effect of neurofeedback on brain connectivity associated with chronic pain. We analysed the influence of neurofeedback on the connectivity between the electroencephalograph (EEG) and heart rate (HR). METHODS: Seventeen patients diagnosed with fibromyalgia were divided into three groups: good sensorimotor rhythm (SMR) training responders (n = 4), bad SMR responders (n = 5) and fake training (SHAM, n = 8). Training consisted of six sessions in which participants learned to synchronize and desynchronize SMR power. Before the first training (pre-resting state) and sixth training (post-resting state) session, open-eye resting-state EEG and electrocardiograph signals were recorded. RESULTS: Good responders reduced pain ratings after SMR neurofeedback training. This improvement in fibromyalgia symptoms was associated with a reduction of the connectivity between the central area and HR, between central and frontal areas, within the central area itself, and between central and occipital areas. The sham group and poor responders experienced no changes in their fibromyalgia symptoms. CONCLUSIONS: Our results provide new evidence that neurofeedback is a promising tool that can be used to treat of chronic pain syndromes and to obtain a better understanding of the interactions between physiological networks. These findings are preliminary, but they may pave the way for future studies that are more methodologically robust. In addition, new research questions are raised: what is the role of the central-peripheral network in chronic pain and what is the effect of neurofeedback on this network.

View Full Paper →

Brain training with neurofeedback in patients with mild cognitive impairment: a review study

Arroyo-Alvis, Katy Estela, Allegri, Ricardo Francisco, Barcelo Martínez, Ernesto Alejandro (2022) · Gaceta Médica de Caracas

Objective: The study aimed to establish the differences in the levels of adaptation, social support, and perceived family functionality according to sex, age, and school grade of a sample of 160 children and adolescents affected by floods in the Mojana sub-region of the Department of Sucre, Colombia.

View Full Paper →

Neurological Mechanisms of Diagnosis and Therapy in School Children with ADHD in Poland

Nermend, Małgorzata, Flaga-Gieruszyńska, Kinga, Kroplewski, Zdzisław, Nermend, Kesra (2022) · International Journal of Environmental Research and Public Health

The paper aims to present a holistic view of attention deficit hyperactivity disorder (ADHD) in pedagogical, psychological, legal, and social dimensions in Polish schools. The authors present the benefits of neurofeedback therapy for elementary school pupils. In order to verify the validity, the paper compares the concordance of a medical diagnosis confirming ADHD syndrome with the occurrence of abnormal electrical brain function recording and abnormalities therein as well as the effectiveness of the neurofeedback therapy. The study confirms that the reported problems faced by pupils and affecting their emotional functioning are reflected in their EEG records. Conclusions from the study lead to the proposal that the neurofeedback assessment should be performed at schools, which should result in the implementation of effective therapy. Moreover, the neurofeedback method should be promoted in Polish schools as an alternative to pharmacological therapy, which, as the research proves, is not always effective. Neurofeedback therapy, similarly to behavioral therapy, is very much needed and useful because it provides optimal conditions for the child's development and shapes their relations with the environment effectively and harmlessly.

View Full Paper →

Effectivity of ILF Neurofeedback on Autism Spectrum Disorder—A Case Study

Rauter, Alexandra, Schneider, Horst, Prinz, Wolfgang (2022) · Frontiers in Human Neuroscience

Autism spectrum disorder (ASD) is a neural and mental developmental disorder that impacts brain connectivity and information processing. Although application of the infra-low frequency (ILF) neurofeedback procedure has been shown to lead to significant changes in functional connectivity in multiple areas and neuronal networks of the brain, rather limited data are available in the literature for the efficacy of this technique in a therapeutic context to treat ASD. Here we present the case study of a 5-year-old boy with ASD, who received a treatment of 26 sessions of ILF neurofeedback over a 6-month period. A systematic and quantitative tracking of core ASD symptoms in several categories was used to document behavioral changes over time. The ILF neurofeedback intervention decreased the average symptom severity of every category to a remarkable degree, with the strongest effect (80 and 77% mean severity reduction) for physical and sleep symptoms and the lowest influence on behavioral symptoms (15% mean severity reduction). This case study is representative of clinical experience, and thus shows that ILF neurofeedback is a practical and effective therapeutic instrument to treat ASD in children.

View Full Paper →

The efficacy of neurofeedback for alcohol use disorders - a systematic review

Dave, F, Tripathi, R (2022) · The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry

Background: Alcoholism is a serious social, economic and public health problem. Alcoholism can affect the gastrointestinal, neurological, cardiovascular and respiratory systems, and it can be fatal, costing the healthcare system huge amounts of money. Despite the availability of cognitive-behavioural and psychosocial therapies, alcoholism has a high recurrence rate and a dismal prognosis, with a wide inter-individual variation. As a result, better or adjuvant therapies that improve or facilitate alcoholism therapy are required. We conducted a systematic review to look into the published studies that reported the effectiveness of non-pharmacological neurofeedback (NF) interventions in patients with alcohol use disorders (AUDs). Methods: PubMed, Google Scholar, The Cochrane Library, Science Direct and Clinicaltrial.gov were searched until 4 April 2022. Original articles of any design reporting on the use of NF approaches in the treatment of AUDs were included. Information related to study design, participants, control group, neuromodulation therapy, number of sessions and key findings of the study were extracted. The Joanna Briggs Institute’s (JBI) Critical Appraisal Checklist for Studies was used to assess the quality of studies. Results: A total of 20 research articles (including 618 participants) were retrieved and included for qualitative analysis. The sample size ranged from 1 (case report) to 80, with years of publication ranging from 1977 to 2022. Nine of the 20 articles included in the study were conducted in the United States, followed by Germany, the United Kingdom, India, the Netherlands and South Korea. Out of the 20 studies included, 8 (40%) had a moderate risk of bias, while the other, i.e. 60% had a low risk of bias. The effectiveness of various neurological treatments in the treatment of AUDs was established in these 20 studies. There have been 11 studies on EEG NF training, three studies on real-time FMRI NF, two studies each on transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), and one study each on deep brain stimulation (DBS) and theta burst stimulation (TBS). These alternative neurological therapies have been demonstrated to lower alcohol cravings and consumption temporarily, reduce anxiety and depression scores, reduce relapse rates and increase control of brain activity. Conclusions: The use of various neuromodulation approaches to the treatment of AUD shows promise. However, more research with larger sample size is required.

View Full Paper →

Double-Blind, Sham-Controlled Randomized Trial Testing the Efficacy of fMRI Neurofeedback on Clinical and Cognitive Measures in Children With ADHD

Lam, Sheut-Ling, Criaud, Marion, Lukito, Steve, Westwood, Samuel J., Agbedjro, Deborah, Kowalczyk, Olivia S., Curran, Sarah, Barret, Nadia, Abbott, Chris, Liang, Holan, Simonoff, Emily, Barker, Gareth J., Giampietro, Vincent, Rubia, Katya (2022) · The American Journal of Psychiatry

OBJECTIVE: Functional MRI neurofeedback (fMRI-NF) could potentially be a novel, safe nonpharmacological treatment for attention deficit hyperactivity disorder (ADHD). A proof-of-concept randomized controlled trial of fMRI-NF of the right inferior frontal cortex (rIFC), compared to an active control condition, showed promising improvement of ADHD symptoms (albeit in both groups) and in brain function. However, comparison with a placebo condition in a larger trial is required to test efficacy. METHODS: This double-blind, sham-controlled randomized controlled trial tested the effectiveness and efficacy of fMRI-NF of the rIFC on symptoms and executive functions in 88 boys with ADHD (44 each in the active and sham arms). To investigate treatment-related changes, groups were compared at the posttreatment and 6-month follow-up assessments, controlling for baseline scores, age, and medication status. The primary outcome measure was posttreatment score on the ADHD Rating Scale (ADHD-RS). RESULTS: No significant group differences were found on the ADHD-RS. Both groups showed similar decreases in other clinical and cognitive measures, except for a significantly greater decrease in irritability and improvement in motor inhibition in sham relative to active fMRI-NF at the posttreatment assessment, covarying for baseline. There were no significant side effects or adverse events. The active relative to the sham fMRI-NF group showed enhanced activation in rIFC and other frontal and temporo-occipital-cerebellar self-regulation areas. However, there was no progressive rIFC upregulation, correlation with ADHD-RS scores, or transfer of learning. CONCLUSIONS: Contrary to the hypothesis, the study findings do not suggest that fMRI-NF of the rIFC is effective in improving clinical symptoms or cognition in boys with ADHD.

View Full Paper →

Infralow neurofeedback in the treatment of substance use disorders: a randomized controlled trial

Gabrielsen, Karin Berle, Clausen, Thomas, Haugland, Siri Håvås, Hollup, Stig Arvid, Vederhus, John-Kåre (2022) · Journal of Psychiatry and Neuroscience

Background: Infralow neurofeedback (ILF-NF) was recently developed as a subtype of traditional, frequency-based neurofeedback that targets cerebral rhythmic activity below 0.5 Hz and improves brain self-regulation. The efficacy of ILF-NF in the treatment of substance use disorder has not yet been evaluated, but clinical evidence suggests that it may prevent relapse by improving functioning in various life domains. The current study aimed to fill this research gap and extend empirical evidence related to this issue. Methods: Ninety-three patients with substance use disorders at an outpatient unit in Norway were randomized to receive 20 sessions (30 minutes each) of ILF-NF training combined with treatment as usual (TAU), or TAU alone. The primary outcome was quality of life post-treatment as an overall measure of functioning. We analyzed between-group differences using Student t tests. Results: We found no significant differences in quality of life between groups. We found similar nonsignificant results for most of the secondary outcome measures, including drug use, sleep, anxiety and depression. Compared to TAU, the ILF-NF + TAU group reported significantly lower restlessness scores post-treatment (mean difference −1.8, 95% confidence interval –3.1 to –0.5; p = 0.006). Limitations: This study was limited by broad inclusion criteria and a lack of placebo control (sham neurofeedback treatment). Conclusion: ILF-NF offered limited additional benefit when combined with TAU, except in the area of restlessness. Future studies could further investigate the relationship between ILF-NF, restlessness and substance use in targeted subpopulations to illuminate relapse mechanisms. Clinical trial registration: ClinicalTrials.gov: NCT03356210.

View Full Paper →

Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis

Pindi, Pamela, Houenou, Josselin, Piguet, Camille, Favre, Pauline (2022) · Progress in Neuro-Psychopharmacology & Biological Psychiatry

Neurofeedback using real-time functional MRI (RT-fMRI-NF) is an innovative technique that allows to voluntarily modulate a targeted brain response and its associated behavior. Despite promising results in the current literature, its effectiveness on symptoms management in psychiatric disorders is not yet clearly demonstrated. Here, we provide 1) a state-of-art qualitative review of RT-fMRI-NF studies aiming at alleviating clinical symptoms in a psychiatric population; 2) a quantitative evaluation (meta-analysis) of RT-fMRI-NF effectiveness on various psychiatric disorders and 3) methodological suggestions for future studies. Thirty-one clinical trials focusing on psychiatric disorders were included and categorized according to standard diagnostic categories. Among the 31 identified studies, 22 consisted of controlled trials, of which only eight showed significant clinical improvement in the experimental vs. control group after the training. Nine studies found an effect at follow-up on ADHD symptoms, emotion dysregulation, facial emotion processing, depressive symptoms, hallucinations, psychotic symptoms, and specific phobia. Within-group meta-analysis revealed large effects of the NF training on depressive symptoms right after the training (g = 0.81, p < 0.01) and at follow-up (g = 1.19, p < 0.01), as well as medium effects on anxiety (g = 0.44, p = 0.01) and emotion regulation (g = 0.48, p < 0.01). Between-group meta-analysis showed a medium effect on depressive symptoms (g = 0.49, p < 0.01) and a large effect on anxiety (g = 0.77, p = 0.01). However, the between-studies heterogeneity is very high. The use of RT-fMRI-NF as a treatment for psychiatric symptoms is promising, however, further double-blind, multicentric, randomized-controlled trials are warranted.

View Full Paper →

Effects of an intensive slow cortical potentials neurofeedback training in female and male adolescents with autism spectrum disorder : Are there sex differences?

Werneck-Rohrer, Sonja G., Lindorfer, Theresa M., Waleew, Carolin, Philipp, Julia, Prillinger, Karin, Konicar, Lilian (2022) · Wiener Klinische Wochenschrift

BACKGROUND: This study aims to compare the effects of neurofeedback training on male and female adolescents with autism spectrum disorder (ASD). Furthermore, it examines sex differences regarding improvements in co-occurring psychopathological symptoms, cognitive flexibility and emotion recognition abilities. The study might provide first hints whether there is an influence of sex on treatment outcomes. METHODS: Six female and six male adolescents with ASD were matched according to age, IQ and symptom severity. All participants received 24 sessions of electroencephalography-based neurofeedback training. Before and after the intervention, psychological data for measuring co-occurring psychopathological symptoms as well as behavioral data for measuring cognitive flexibility and emotion recognition abilities were recorded. RESULTS: Caregivers rated statistically significant higher psychopathological problems in female than in male adolescents with ASD at baseline. Apart from that, no statistically significant sex-related differences were revealed in this sample; however, male adolescents tended to report greater improvements of externalizing, internalizing and total symptoms, whereas females experienced smaller improvements of externalizing and total problems, but no improvements of internalizing problems. Regarding caregivers' assessments, more improvement of total problems was reported for females. For males, only improvements of internalizing and total problems were described. CONCLUSION: This study reveals preliminary results that sex-related differences might play a role when evaluating treatment outcomes after neurofeedback training regarding comorbid psychopathological symptoms. Adolescents' self-report and parental assessments, especially concerning psychopathological symptoms, should be combined and considered in future studies to help prevent sex bias in adolescents with ASD.

View Full Paper →

Effect of neurofeedback therapy on neurological post-COVID-19 complications (A pilot study)

Orendáčová, Mária, Kvašňák, Eugen, Vránová, Jana (2022) · PloS One

OBJECTIVE: Anxiety, fatigue and depression are common neurological manifestations after COVID-19. So far, post-COVID complications were treated by rehabilitation, oxygen therapy and immunotherapy. Effects of neurofeedback on post-COVID complications and their potential interrelatedness have not been studied yet. In this pilot study, we investigated the effectiveness of neurofeedback (Othmer method) for treatment of fatigue, anxiety, and depression after COVID-19. METHODS: 10 participants met inclusion criteria for having positive anamnesis of at least one of the following complications following COVID-19: fatigue, anxiety, and depression which were measured by questionnaires. ANOVA was used for calculating differences in questionnaire score before and after neurofeedback. Pearson's correlation coefficient was used to calculate correlations between anxiety, depression and fatigue. RESULTS: After five neurofeedback sessions, there came to significant reduction of severity of post-COVID anxiety and depression persisting for at least one month. Effect of neurofeedback on fatigue was insignificant. Severity of anxiety, fatigue and depression as well as reductions in depression and fatigue were positively correlated with each other. CONCLUSION: These findings showed effectiveness neurofeedback for reducing anxiety and depression after COVID-19 and for studying correlations between neurological complications after COVID-19. However, since our pilot clinical trial was open-label, it is hard to differentiate between neurofeedback-specific and unspecific effects on our participants. Future randomized controlled trials with more robust sample are necessary to investigate feasibility of neurofeedback for post-COVID neurological complications. The study has identification number trial ID ISRCTN49037874 in ISRCTN register of clinical trials (Retrospectively registered).

View Full Paper →

Impulsivity Moderates the Effect of Neurofeedback Training on the Contingent Negative Variation in Autism Spectrum Disorder

Prillinger, Karin, Radev, Stefan T., Doganay, Kamer, Poustka, Luise, Konicar, Lilian (2022) · Frontiers in Human Neuroscience

Background The contingent negative variation (CNV) is a well-studied indicator of attention- and expectancy-related processes in the human brain. An abnormal CNV amplitude has been found in diverse neurodevelopmental psychiatric disorders. However, its role as a potential biomarker of successful clinical interventions in autism spectrum disorder (ASD) remains unclear. Methods In this randomized controlled trial, we investigated how the CNV changes following an intensive neurofeedback training. Therefore, twenty-one adolescents with ASD underwent 24 sessions of slow cortical potential (SCP) neurofeedback training. Twenty additional adolescents with ASD formed a control group and received treatment as usual. CNV waveforms were obtained from a continuous performance test (CPT), which all adolescents performed before and after the corresponding 3-month long training period. In order to utilize all available neural time series, trial-based area under the curve values for all four electroencephalogram (EEG) channels were analyzed with a hierarchical Bayesian model. In addition, the model included impulsivity, inattention, and hyperactivity as potential moderators of change in CNV. Results Our model implies that impulsivity moderates the effects of neurofeedback training on CNV depending on group. In the control group, the average CNV amplitude decreased or did not change after treatment as usual. In the experimental group, the CNV changed depending on the severity of comorbid impulsivity symptoms. The average CNV amplitude of participants with low impulsivity scores decreased markedly, whereas the average CNV amplitude of participants with high impulsivity increased. Conclusion The degree of impulsivity seems to play a crucial role in the changeability of the CNV following an intensive neurofeedback training. Therefore, comorbid symptomatology should be recorded and analyzed in future EEG-based brain training interventions. Clinical Trial Registration https://www.drks.de , identifier DRKS00012339.

View Full Paper →

Improving cognitive control: Is theta neurofeedback training associated with proactive rather than reactive control enhancement?

Eschmann, Kathrin C. J., Mecklinger, Axel (2022) · Psychophysiology

Frontal-midline (FM) theta activity (4-8 Hz) is proposed to reflect a mechanism for cognitive control that is needed for working memory retention, manipulation, and interference resolution. Modulation of FM theta activity via neurofeedback training (NFT) demonstrated transfer to some but not all types of cognitive control. Therefore, the present study investigated whether FM theta NFT enhances performance and modulates underlying EEG characteristics in a delayed match to sample (DMTS) task requiring mainly proactive control and a color Stroop task requiring mainly reactive control. Moreover, temporal characteristics of transfer were explored over two posttests. Across seven 30-min NFT sessions, an FM theta training group exhibited a larger FM theta increase compared to an active control group who upregulated randomly chosen frequency bands. In a posttest performed 13 days after the last training session, the training group showed better retention performance in the DMTS task. Furthermore, manipulation performance was associated with NFT theta increase for the training but not the control group. Contrarily, behavioral group differences and their relation to FM theta change were not significant in the Stroop task, suggesting that NFT is associated with proactive but not reactive control enhancement. Transfer to both tasks at a posttest one day after training was not significant. Behavioral improvements were not accompanied by changes in FM theta activity, indicating no training-induced modulation of EEG characteristics. Together, these findings suggest that NFT supports transfer to cognitive control that manifests late after training but that other training-unspecific factors may also contribute to performance enhancement.

View Full Paper →

Efficacy and acceptability of pharmacological, psychosocial, and brain stimulation interventions in children and adolescents with mental disorders: an umbrella review

Correll, Christoph U., Cortese, Samuele, Croatto, Giovanni, Monaco, Francesco, Krinitski, Damir, Arrondo, Gonzalo, Ostinelli, Edoardo G., Zangani, Caroline, Fornaro, Michele, Estradé, Andrés, Fusar‐Poli, Paolo, Carvalho, Andre F., Solmi, Marco (2021) · World Psychiatry

Top‐tier evidence on the safety/tolerability of 80 medications in children/adolescents with mental disorders has recently been reviewed in this jour­nal. To guide clinical practice, such data must be combined with evidence on efficacy and acceptability. Besides medications, psychosocial inter­ventions and brain stimulation techniques are treatment options for children/adolescents with mental disorders. For this umbrella review, we systematically searched network meta‐analyses (NMAs) and meta‐analyses (MAs) of randomized controlled trials (RCTs) evaluating 48 medications, 20 psychosocial interventions, and four brain stimulation techniques in children/adolescents with 52 different mental disorders or groups of mental disorders, reporting on 20 different efficacy/acceptability outcomes. Co‐primary outcomes were disease‐specific symptom reduction and all‐cause discontinuation (“acceptability”). We included 14 NMAs and 90 MAs, reporting on 15 mental disorders or groups of mental disorders. Overall, 21 medications outperformed placebo regarding the co‐primary outcomes, and three psychosocial interventions did so (while seven outperformed waiting list/no treatment). Based on the meta‐analytic evidence, the most convincing efficacy profile emerged for amphetamines, methylphenidate and, to a smaller extent, behavioral therapy in attention‐deficit/hyperactivity disorder; aripiprazole, risperidone and several psychosocial interventions in autism; risperidone and behavioral interventions in disruptive behavior disorders; several antipsychotics in schizophrenia spectrum disorders; fluoxetine, the combination of fluoxetine and cognitive behavioral therapy (CBT), and interpersonal therapy in depression; aripiprazole in mania; fluoxetine and group CBT in anxiety disorders; fluoxetine/selective serotonin reuptake inhibitors, CBT, and behavioral therapy with exposure and response prevention in obsessive‐compulsive disorder; CBT in post‐traumatic stress disorder; imipramine and alarm behavioral intervention in enuresis; behavioral therapy in encopresis; and family therapy in anorexia nervosa. Results from this umbrella review of interventions for mental disorders in children/adolescents provide evidence‐based information for clinical decision making.

View Full Paper →

Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements

Bichsel, Oliver, Stieglitz, Lennart H., Oertel, Markus F., Baumann, Christian R., Gassert, Roger, Imbach, Lukas L. (2021) · Scientific Reports

Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback.

View Full Paper →

Double-Blind Placebo-Controlled Randomized Clinical Trial of Neurofeedback for Attention-Deficit/Hyperactivity Disorder With 13-Month Follow-up

Arnold, L.E, Arns, M, Bergman, Rachel, Barterian, J, Black, S, Conners, C. Keith, Connor, Shea, Dasgupta, S (2021) · Journal of the American Academy of Child and Adolescent Psychiatry

OBJECTIVE: To determine whether theta/beta-ratio (TBR) electroencephalographic biofeedback (neurofeedback [NF]) has a specific effect on attention-deficit/hyperactivity disorder (ADHD) beyond nonspecific benefit. METHOD: In a 2-site double-blind randomized clinical trial, 144 children aged 7 to 10 years with rigorously diagnosed moderate/severe ADHD and theta/beta-ratio (TBR) ≥4.5 were randomized 3:2 to deliberate TBR downtraining versus a control of equal duration, intensity, and appearance. Two early dropouts left 142 children for modified intent-to-treat analysis. The control used prerecorded electroencephalograms with the participant's artifacts superimposed. Treatment was programmed via Internet by an off-site statistician-guided co-investigator. Fidelity was 98.7% by trainers/therapists and 93.2% by NF expert monitor. The primary outcome was parent- and teacher-rated inattention; analysis was mixed-effects regression. Because the expense and effort of NF can be justified only by enduring benefit, follow-ups were integrated. RESULTS: Blinding was excellent. Although both groups showed significant improvement (p < .001, d = 1.5) in parent/teacher-rated inattention from baseline to treatment end and 13-month follow-up, NF was not significantly superior to the control condition at either time point on this primary outcome (d = 0.01, p = .965 at treatment end; d = 0.23, p = .412 at 13-month follow-up). Responders (Clinical Global Impression-Improvement [CGI-I] = 1-2) were 61% of NF and 54% of controls (p = .36). Adverse events were distributed proportionally between treatments. The 13-month follow-up found nonsignificant improvement from treatment end for NF (d = 0.1), with mild deterioration for controls (d = -0.07). NF required significantly less medication at follow-up (p = .012). CONCLUSION: This study does not support a specific effect of deliberate TBR NF at either treatment end or 13-month follow-up. Participants will be reassessed at 25-month follow-up. CLINICAL TRIAL REGISTRATION INFORMATION: Double-Blind 2-Site Randomized Clinical Trial of Neurofeedback for ADHD; https://clinicaltrials.gov/; NCT02251743.

View Full Paper →

The impact of real-time fMRI denoising on online evaluation of brain activity and functional connectivity

Misaki, Masaya, Bodurka, Jerzy (2021) · Journal of Neural Engineering

Objective. Comprehensive denoising is imperative in functional magnetic resonance imaging (fMRI) analysis to reliably evaluate neural activity from the blood oxygenation level dependent signal. In real-time fMRI, however, only a minimal denoising process has been applied and the impact of insufficient denoising on online brain activity estimation has not been assessed comprehensively. This study evaluated the noise reduction performance of online fMRI processes in a real-time estimation of regional brain activity and functional connectivity.Approach.We performed a series of real-time processing simulations of online fMRI processing, including slice-timing correction, motion correction, spatial smoothing, signal scaling, and noise regression with high-pass filtering, motion parameters, motion derivatives, global signal, white matter/ventricle average signals, and physiological noise models with image-based retrospective correction of physiological motion effects (RETROICOR) and respiration volume per time (RVT).Main results.All the processing was completed in less than 400 ms for whole-brain voxels. Most processing had a benefit for noise reduction except for RVT that did not work due to the limitation of the online peak detection. The global signal regression, white matter/ventricle signal regression, and RETROICOR had a distinctive noise reduction effect, depending on the target signal, and could not substitute for each other. Global signal regression could eliminate the noise-associated bias in the mean dynamic functional connectivity across time.Significance.The results indicate that extensive real-time denoising is possible and highly recommended for real-time fMRI applications.

View Full Paper →

Visual perceptual learning of a primitive feature in human V1/V2 as a result of unconscious processing, revealed by decoded functional MRI neurofeedback (DecNef)

Wang, Zhiyan, Tamaki, Masako, Frank, Sebastian M., Shibata, Kazuhisa, Worden, Michael S., Yamada, Takashi, Kawato, Mitsuo, Sasaki, Yuka, Watanabe, Takeo (2021) · Journal of Vision

Although numerous studies have shown that visual perceptual learning (VPL) occurs as a result of exposure to a visual feature in a task-irrelevant manner, the underlying neural mechanism is poorly understood. In a previous psychophysical study (Watanabe et al., 2002), subjects were repeatedly exposed to a task-irrelevant Sekuler motion display that induced the perception of not only the local motions, but also a global motionmoving in the direction of the spatiotemporal average of the local motion vectors. As a result of this exposure, subjects enhanced their sensitivity only to the local moving directions, suggesting that early visual areas (V1/V2) that process local motions are involved in task-irrelevant VPL. However, this hypothesis has never been tested directly using neuronal recordings. Here, we employed a decoded neurofeedback technique (DecNef) using functional magnetic resonance imaging in human subjects to examine the involvement of early visual areas (V1/V2) in task-irrelevant VPL of local motion within a Sekuler motion display. During the DecNef training, subjects were trained to induce the activity patterns in V1/V2 that were similar to those evoked by the actual presentation of the Sekuler motion display. The DecNef training was conducted with neither the actual presentation of the display nor the subjects' awareness of the purpose of the experiment. After the experiment, subjects reported that they neither perceived nor imagined the trained motion during the DecNef training. As a result of DecNef training, subjects increased their sensitivity to the local motion directions, but not specifically to the global motion direction. Neuronal changes related to DecNef training were confined to V1/V2. These results suggest that V1/V2 are involved in exposure-based task-irrelevant VPL of local motion.

View Full Paper →

Predictors of real-time fMRI neurofeedback performance and improvement - A machine learning mega-analysis

Haugg, Amelie, Renz, Fabian M., Nicholson, Andrew A., Lor, Cindy, Götzendorfer, Sebastian J., Sladky, Ronald, Skouras, Stavros, McDonald, Amalia, Craddock, Cameron, Hellrung, Lydia, Kirschner, Matthias, Herdener, Marcus, Koush, Yury, Papoutsi, Marina, Keynan, Jackob, Hendler, Talma, Cohen Kadosh, Kathrin, Zich, Catharina, Kohl, Simon H., Hallschmid, Manfred, MacInnes, Jeff, Adcock, R. Alison, Dickerson, Kathryn C., Chen, Nan-Kuei, Young, Kymberly, Bodurka, Jerzy, Marxen, Michael, Yao, Shuxia, Becker, Benjamin, Auer, Tibor, Schweizer, Renate, Pamplona, Gustavo, Lanius, Ruth A., Emmert, Kirsten, Haller, Sven, Van De Ville, Dimitri, Kim, Dong-Youl, Lee, Jong-Hwan, Marins, Theo, Megumi, Fukuda, Sorger, Bettina, Kamp, Tabea, Liew, Sook-Lei, Veit, Ralf, Spetter, Maartje, Weiskopf, Nikolaus, Scharnowski, Frank, Steyrl, David (2021) · NeuroImage

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.

View Full Paper →

Matched neurofeedback during fMRI differentially activates reward-related circuits in active and sham groups

Guler, Seyhmus, Cohen, Alexander L., Afacan, Onur, Warfield, Simon K. (2021) · Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging

BACKGROUND AND PURPOSE: Functional MRI neurofeedback (fMRI-nf) leverages the brain's ability to self-regulate its own activity. However, self-regulation processes engaged during fMRI-nf are incompletely understood. Here, we used matched feedback in an fMRI-nf experimental protocol to investigate whether brain processes recognize true neurofeedback signals. METHODS: We implemented an existing fMRI-nf protocol to train lateralized motor activity using a finger-tap task in conjunction with real-time feedback. Twelve healthy, right-handed, adult participants were assigned into age- and sex-matched active and sham study groups. Matched participant pairs received the same visual feedback, based on brain activity of the participant from the active group. We compared group-averaged activation maps before, during, and after neurofeedback, and analyzed changes in lateralized motor activity due to neurofeedback. RESULTS: Active and sham groups demonstrated different brain activation to the same feedback during neurofeedback. In particular, there was higher activation in visual cortex, secondary somatosensory cortex, and right inferior frontal gyrus in the active group compared to the sham group. Conversely, sham participants demonstrated higher activation in anterior cingulate cortex, left frontal pole, and posterior superior temporal gyrus. Despite differing brain activations during neurofeedback, neither group demonstrated significant improvement in lateralized motor activity from pre to postfeedback scan in the same session. We also observed no significant difference between pre and postfeedback activation maps, suggesting that no significant finger-tap related functional reorganization had occurred. CONCLUSIONS: These findings suggest that fMRI neurofeedback paradigms that monitor or incorporate activity from regions reported here would provide enhanced efficacy for research investigation and clinical intervention.

View Full Paper →

Interacting brains coming in sync through their minds: an interbrain neurofeedback study

Müller, Viktor, Perdikis, Dionysios, Mende, Melinda A., Lindenberger, Ulman (2021) · Annals of the New York Academy of Sciences

Neurophysiological evidence shows that interpersonal action coordination is accompanied by interbrain synchronization (IBS). However, the functional significance of this association remains unclear. Using two experimental designs, we explored whether IBS is amenable to neurofeedback (NFB). Feedback was provided either as two balls approaching each other (so-called ball design), or as two pendula, each reflecting the oscillatory activity of one of the two participants (so-called pendulum design). The NFB was provided at delta (i.e., 2.5 Hz) and theta (i.e., 5 Hz) electroencephalography frequencies, and manipulated by enhanced and inverse feedback. We showed that the participants were able to increase IBS by using NFB, especially when it was fed back at the theta frequency. Apart from intra- and interbrain coupling, other oscillatory activities (e.g., power spectral density, peak amplitude, and peak frequency) also changed during the task compared with the rest. Moreover, all the measures showed specific correlations with the subjective postsurvey item scores, reflecting subjective feeling and appraisal. We conclude that the use of IBS for NFB might help in specifying the contribution of IBS to interpersonal action coordination and in providing important information about the neural mechanisms of social interaction and the causal dimension of IBS.

View Full Paper →

Neurofeedback therapy for the management of multiple sclerosis symptoms: current knowledge and future perspectives

Ayache, Samar S., Bardel, Benjamin, Lefaucheur, Jean-Pascal, Chalah, Moussa A. (2021) · Journal of Integrative Neuroscience

Fatigue is a frequent and debilitating symptom in patients with multiple sclerosis (MS). Affective manifestations are also of high prevalence in this population and can drastically impact the patients' functioning. A considerable proportion of patients with MS suffer from cognitive deficits affecting general and social cognitive domains. In addition, pain in MS is commonly observed in neurology wards, could be of different types, and may result from or be exacerbated by other MS comorbidities. These complaints tend to cluster together in some patients and seem to have a complex pathophysiology and a challenging management. Exploring the effects of new interventions could improve these outcomes and ameliorate the patients' quality of life. Neurofeedback (NFB) might have its place in this context by enhancing or reducing the activity of some regions in specific electroencephalographic bands (i.e., theta, alpha, beta, sensorimotor rhythm). This work briefly revisits the principles of NFB and its application. The published data are scarce and heterogeneous yet suggest preliminary evidence on the potential utility of NFB in patients with MS (i.e., depression, fatigue, cognitive deficits and pain). NFB is simple to adapt and easy to coach, and its place in the management of MS symptoms merits further investigations. Comparing different NFB protocols (i.e., cortical target, specific rhythm, session duration and number) and performing a comprehensive evaluation could help developing and optimizing interventions targeting specific symptoms. These aspects could also open the way for the association of this technique with other approaches (i.e., brain stimulation, cognitive rehabilitation, exercise training, psychotherapies) that have proved their worth in some MS domains.

View Full Paper →

Can neurophysiological markers of anticipation and attention predict ADHD severity and neurofeedback outcomes?

Aggensteiner, Pascal-M., Albrecht, Björn, Strehl, Ute, Wörz, Sonja, Ruckes, Christian, Freitag, Christine M., Rothenberger, Aribert, Gevensleben, Holger, Millenet, Sabina, Hohmann, Sarah, Banaschewski, Tobias, Legenbauer, Tanja, Holtmann, Martin, Brandeis, Daniel (2021) · Biological Psychology

Neurophysiological measures of preparation and attention are often atypical in ADHD. Still, replicated findings that these measures predict which patients improve after Neurofeedback (NF), reveal neurophysiological specificity, and reflect ADHD-severity are limited. METHODS: We analyzed children's preparatory (CNV) and attentional (Cue-P3) brain activity and behavioral performance during a cued Continuous Performance Task (CPT) before and after slow cortical potential (SCP)-NF or semi-active control treatment (electromyogram biofeedback). Mixed-effects models were performed with 103 participants at baseline and 77 were assessed for pre-post comparisons focusing on clinical outcome prediction, specific neurophysiological effects of NF, and associations with ADHD-severity. RESULTS: Attentional and preparatory brain activity and performance were non-specifically reduced after treatment. Preparatory activity in the SCP-NF group increased with clinical improvement. Several performance and brain activity measures predicted non-specific treatment outcome. CONCLUSION: Specific neurophysiological effects after SCP-NF were limited to increased neural preparation associated with improvement on ADHD-subscales, but several performance and neurophysiological measures of attention predicted treatment outcome and reflected symptom severity in ADHD. The results may help to optimize treatment.

View Full Paper →

Neurofeedback Training Based on Motor Imagery Strategies Increases EEG Complexity in Elderly Population

Marcos-Martínez, Diego, Martínez-Cagigal, Víctor, Santamaría-Vázquez, Eduardo, Pérez-Velasco, Sergio, Hornero, Roberto (2021) · Entropy

Neurofeedback training (NFT) has shown promising results in recent years as a tool to address the effects of age-related cognitive decline in the elderly. Since previous studies have linked reduced complexity of electroencephalography (EEG) signal to the process of cognitive decline, we propose the use of non-linear methods to characterise changes in EEG complexity induced by NFT. In this study, we analyse the pre- and post-training EEG from 11 elderly subjects who performed an NFT based on motor imagery (MI–NFT). Spectral changes were studied using relative power (RP) from classical frequency bands (delta, theta, alpha, and beta), whilst multiscale entropy (MSE) was applied to assess EEG-induced complexity changes. Furthermore, we analysed the subject’s scores from Luria tests performed before and after MI–NFT. We found that MI–NFT induced a power shift towards rapid frequencies, as well as an increase of EEG complexity in all channels, except for C3. These improvements were most evident in frontal channels. Moreover, results from cognitive tests showed significant enhancement in intellectual and memory functions. Therefore, our findings suggest the usefulness of MI–NFT to improve cognitive functions in the elderly and encourage future studies to use MSE as a metric to characterise EEG changes induced by MI–NFT.

View Full Paper →

Improving Clinical, Cognitive, and Psychosocial Dysfunctions in Patients with Schizophrenia: A Neurofeedback Randomized Control Trial

Markiewicz, Renata, Markiewicz-Gospodarek, Agnieszka, Dobrowolska, Beata, Łoza, Bartosz (2021) · Neural Plasticity

OBJECTIVES: The aim of this study was to use neurofeedback (NF) training as the add-on therapy in patients with schizophrenia to improve their clinical, cognitive, and psychosocial condition. The study, thanks to the monitoring of various conditions, quantitative electroencephalogram (QEEG) and brain-derived neurotrophic factor (BDNF), was supposed to give an insight into mechanisms underlying NF training results. METHODS: Forty-four male patients with schizophrenia, currently in a stable, incomplete remission, were recruited into two, 3-month rehabilitation programs, with standard rehabilitation as a control group (R) or with add-on NF training (NF). Pre- and posttherapy primary outcomes were compared: clinical (Positive and Negative Syndrome Scale (PANSS)), cognitive (Color Trails Test (CTT), d2 test), psychosocial functioning (General Self-Efficacy Scale (GSES), Beck Cognitive Insight Scale (BCIS), and Acceptance of Illness Scale (AIS)), quantitative electroencephalogram (QEEG), auditory event-related potentials (ERPs), and serum level of BDNF. Results. Both groups R and NF improved significantly in clinical ratings (Positive and Negative Syndrome Scale (PANSS)). In-between analyses unveiled some advantages of add-on NF therapy over standard rehabilitation. GSES scores improved significantly, giving the NF group of patients greater ability to cope with stressful or difficult social demands. Also, the serum-level BDNF increased significantly more in the NF group. Post hoc analyses indicated the possibility of creating a separate PANSS subsyndrome, specifically related to cognitive, psychosocial, and BDNF effects of NF therapy. CONCLUSIONS: Neurofeedback can be effectively used as the add-on therapy in schizophrenia rehabilitation programs. The method requires further research regarding its clinical specificity and understanding mechanisms of action.

View Full Paper →

Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients

Yuan, Ziwen, Peng, Yu, Wang, Lisha, Song, Siming, Chen, Shi, Yang, Liu, Liu, Huanhuan, Wang, Haochong, Shi, Gaige, Han, Chengcheng, Cammon, Jared A., Zhang, Yingchun, Qiao, Jin, Wang, Gang (2021) · IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society

Brain-computer interfaces (BCIs) are currently integrated into traditional rehabilitation interventions after stroke. Although BCIs bring many benefits to the rehabilitation process, their effects are limited since many patients cannot concentrate during training. Despite this outcome post-stroke motor-attention dual-task training using BCIs has remained mostly unexplored. This study was a randomized placebo-controlled blinded-endpoint clinical trial to investigate the effects of a BCI-controlled pedaling training system (BCI-PT) on the motor and cognitive function of stroke patients during rehabilitation. A total of 30 early subacute ischemic stroke patients with hemiplegia and cognitive impairment were randomly assigned to the BCI-PT or traditional pedaling training. We used single-channel Fp1 to collect electroencephalography data and analyze the attention index. The BCI-PT system timely provided visual, auditory, and somatosensory feedback to enhance the patient's participation to pedaling based on the real-time attention index. After 24 training sessions, the attention index of the experimental group was significantly higher than that of the control group. The lower limbs motor function (FMA-L) increased by an average of 4.5 points in the BCI-PT group and 2.1 points in the control group (P = 0.022) after treatments. The difference was still significant after adjusting for the baseline indicators ( β = 2.41 , 95%CI: 0.48-4.34, P = 0.024). We found that BCI-PT significantly improved the patient's lower limb motor function by increasing the patient's participation. (clinicaltrials.gov: NCT04612426).

View Full Paper →

Volitional modification of brain activity in adolescents with Autism Spectrum Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback

Konicar, L., Radev, S., Prillinger, K., Klöbl, M., Diehm, R., Birbaumer, N., Lanzenberger, R., Plener, P. L., Poustka, L. (2021) · NeuroImage. Clinical

Autism spectrum disorder is (ASD) characterized by a persisting triad of impairments of social interaction, language as well as inflexible, stereotyped and ritualistic behaviors. Increasingly, scientific evidence suggests a neurobiological basis of these emotional, social and cognitive deficits in individuals with ASD. The aim of this randomized controlled brain self-regulation intervention study was to investigate whether the core symptomatology of ASD could be reduced via an electroencephalography (EEG) based brain self-regulation training of Slow Cortical Potentials (SCP). 41 male adolescents with ASD were recruited and allocated to a) an experimental group undergoing 24 sessions of EEG-based brain training (n1 = 21), or to b) an active control group undergoing conventional treatment (n2 = 20), that is, clinical counseling during a 3-months intervention period. We employed real-time neurofeedback training recorded from a fronto-central electrode intended to enable participants to volitionally regulate their brain activity. Core autistic symptomatology was measured at six time points during the intervention and analyzed with Bayesian multilevel approach to characterize changes in core symptomatology. Additional Bayesian models were formulated to describe the neural dynamics of the training process as indexed by SCP (time-domain) and power density (PSD, frequency-domain) measures. The analysis revealed a substantial improvement in the core symptomatology of ASD in the experimental group (reduction of 21.38 points on the Social Responsiveness Scale, SD = 5.29), which was slightly superior to that observed in the control group (evidence Ratio = 5.79). Changes in SCP manifested themselves as different trajectories depending on the different feedback conditions and tasks. Further, the model of PSD revealed a continuous decrease in delta power, parallel to an increase in alpha power. Most notably, a non-linear (quadratic) model turned out to be better at predicting the data than a linear model across all analyses. Taken together, our analyses suggest that behavioral and neural processes of change related to neurofeedback training are complex and non-linear. Moreover, they have implications for the design of future trials and training protocols.

View Full Paper →

Toward Personalizing Alzheimer’s Disease Therapy Using an Intelligent Cognitive Control System

Ben Abdessalem, Hamdi, Frasson, Claude (2021)

Subjective cognitive decline is an early state of Alzheimer’s Disease which affects almost 10 million people every year. It results from negative emotions such as frustration which are more present than healthy adults. For this reason, our work focuses on relaxing subjective cognitive decline patients using virtual reality environments to improve their memory performance. We proposed in our previous work a neurofeedback approach which adapts the virtual environment to each patient according to their emotions using a Neural Agent. We found that the Neural Agent can adapt the environment to each participant but have limitations. This work is a continuation of our approach in which we propose a Limbic Agent able to monitor the interactions between the Neural Agent and patients’ emotional reactions, learn from these interactions, and modify the Neural Agent in order to enhance the adaptation to each patient with an Intelligent Cognitive Control System. Our goal is to create a system able to support the Limbic System which is the main area in charge of controlling emotions and creating memory in the human brain. We used data collected form our previous work to train the Limbic Agent and results showed that the agent is capable of modifying the weight of existing rules, generating new intervention rules, and predicting if they will work or not.

Toward a neurocircuit-based taxonomy to guide treatment of obsessive-compulsive disorder

Shephard, Elizabeth, Stern, Emily R., van den Heuvel, Odile A., Costa, Daniel L. C., Batistuzzo, Marcelo C., Godoy, Priscilla B. G., Lopes, Antonio C., Brunoni, Andre R., Hoexter, Marcelo Q., Shavitt, Roseli G., Reddy, Y. C. Janardhan, Lochner, Christine, Stein, Dan J., Simpson, H. Blair, Miguel, Euripedes C. (2021) · Molecular Psychiatry

An important challenge in mental health research is to translate findings from cognitive neuroscience and neuroimaging research into effective treatments that target the neurobiological alterations involved in psychiatric symptoms. To address this challenge, in this review we propose a heuristic neurocircuit-based taxonomy to guide the treatment of obsessive-compulsive disorder (OCD). We do this by integrating information from several sources. First, we provide case vignettes in which patients with OCD describe their symptoms and discuss different clinical profiles in the phenotypic expression of the condition. Second, we link variations in these clinical profiles to underlying neurocircuit dysfunctions, drawing on findings from neuropsychological and neuroimaging studies in OCD. Third, we consider behavioral, pharmacological, and neuromodulatory treatments that could target those specific neurocircuit dysfunctions. Finally, we suggest methods of testing this neurocircuit-based taxonomy as well as important limitations to this approach that should be considered in future research.

View Full Paper →

Towards semantic fMRI neurofeedback: navigating among mental states using real-time representational similarity analysis

Russo, Andrea G., Lührs, Michael, Di Salle, Francesco, Esposito, Fabrizio, Goebel, Rainer (2021) · Journal of Neural Engineering

Objective. Real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) is a non-invasive MRI procedure allowing examined participants to learn to self-regulate brain activity by performing mental tasks. A novel two-step rt-fMRI-NF procedure is proposed whereby the feedback display is updated in real-time based on high-level representations of experimental stimuli (e.g. objects to imagine) via real-time representational similarity analysis of multi-voxel patterns of brain activity.Approach. In a localizer session, the stimuli become associated with anchored points on a two-dimensional representational space where distances approximate between-pattern (dis)similarities. In the NF session, participants modulate their brain response, displayed as a movable point, to engage in a specific neural representation. The developed method pipeline is verified in a proof-of-concept rt-fMRI-NF study at 7 T involving a single healthy participant imagining concrete objects. Based on this data and artificial data sets with similar (simulated) spatio-temporal structure and variable (injected) signal and noise, the dependence on noise is systematically assessed.Main results. The participant in the proof-of-concept study exhibited robust activation patterns in the localizer session and managed to control the neural representation of a stimulus towards the selected target in the NF session. The offline analyses validated the rt-fMRI-NF results, showing that the rapid convergence to the target representation is noise-dependent.Significance. Our proof-of-concept study introduces a new NF method allowing the participant to navigate among different mental states. Compared to traditional NF designs (e.g. using a thermometer display to set the level of the neural signal), the proposed approach provides content-specific feedback to the participant and extra degrees of freedom to the experimenter enabling real-time control of the neural activity towards a target brain state without suggesting a specific mental strategy to the subject.

View Full Paper →

Neurofeedback for cognitive enhancement and intervention and brain plasticity

Loriette, C., Ziane, C., Ben Hamed, S. (2021) · Revue Neurologique

In recent years, neurofeedback has been used as a cognitive training tool to improve brain functions for clinical or recreational purposes. It is based on providing participants with feedback about their brain activity and training them to control it, initiating directional changes. The overarching hypothesis behind this method is that this control results in an enhancement of the cognitive abilities associated with this brain activity, and triggers specific structural and functional changes in the brain, promoted by learning and neuronal plasticity effects. Here, we review the general methodological principles behind neurofeedback and we describe its behavioural benefits in clinical and experimental contexts. We review the non-specific effects of neurofeedback on the reinforcement learning striato-frontal networks as well as the more specific changes in the cortical networks on which the neurofeedback control is exerted. Last, we analyse the current challenges faces by neurofeedback studies, including the quantification of the temporal dynamics of neurofeedback effects, the generalisation of its behavioural outcomes to everyday life situations, the design of appropriate controls to disambiguate placebo from true neurofeedback effects and the development of more advanced cortical signal processing to achieve a finer-grained real-time modelling of cognitive functions.

View Full Paper →

Recent findings on neurofeedback training for auditory hallucinations in schizophrenia

Hirano, Yoji, Tamura, Shunsuke (2021) · Current Opinion in Psychiatry

PURPOSE OF REVIEW: To provide recent evidence on real-time neurofeedback (NFB) training for auditory verbal hallucinations (AVH) in schizophrenia patients. RECENT FINDINGS: NFB is a promising technique that allows patients to gain control over their AVH by modulating their own speech-related/language-related networks including superior temporal gyrus (STG) and anterior cingulate cortex (ACC) using fMRI, fNIRS and EEG/MEG. A recent limited number of studies showed that while an EEG-based NFB study failed to regulate auditory-evoked potentials and reduce AVH, downregulation of STG hyperactivity and upregulation of ACC activity with fMRI-based NFB appear to alleviate treatment-resistant AVH in schizophrenia patients. A deeper understanding of AVH and development of more effective methodologies are still needed. SUMMARY: Despite recent innovations in antipsychotics, many schizophrenia patients continue to suffer from treatment-resistant AVH and social dysfunctions. Recent studies suggested that real-time NFB shows promise in enabling patients to gain control over AVH by regulating their own speech-related/language-related networks. Although fMRI-NFB is suitable for regulating localized activity, EEG/MEG-NFB are ideal for regulating the ever-changing AVH. Although there are still many challenges including logistic complexity and burden on patients, we hope that such innovative real-time NFB trainings will help patients to alleviate severe symptoms and improve social functioning.

View Full Paper →

Neurotherapeutics for Attention Deficit/Hyperactivity Disorder (ADHD): A Review

Rubia, Katya, Westwood, Samuel, Aggensteiner, Pascal-M., Brandeis, Daniel (2021) · Cells

This review focuses on the evidence for neurotherapeutics for attention deficit/hyperactivity disorder (ADHD). EEG-neurofeedback has been tested for about 45 years, with the latest meta-analyses of randomised controlled trials (RCT) showing small/medium effects compared to non-active controls only. Three small studies piloted neurofeedback of frontal activations in ADHD using functional magnetic resonance imaging or near-infrared spectroscopy, finding no superior effects over control conditions. Brain stimulation has been applied to ADHD using mostly repetitive transcranial magnetic and direct current stimulation (rTMS/tDCS). rTMS has shown mostly negative findings on improving cognition or symptoms. Meta-analyses of tDCS studies targeting mostly the dorsolateral prefrontal cortex show small effects on cognitive improvements with only two out of three studies showing clinical improvements. Trigeminal nerve stimulation has been shown to improve ADHD symptoms with medium effect in one RCT. Modern neurotherapeutics are attractive due to their relative safety and potential neuroplastic effects. However, they need to be thoroughly tested for clinical and cognitive efficacy across settings and beyond core symptoms and for their potential for individualised treatment.

View Full Paper →

Neurofeedback of Alpha Activity on Memory in Healthy Participants: A Systematic Review and Meta-Analysis

Yeh, Wen-Hsiu, Hsueh, Jen-Jui, Shaw, Fu-Zen (2021) · Frontiers in Human Neuroscience

Background: Neurofeedback training (NFT) has recently been proposed as a valuable technique for cognitive enhancement and psychiatric amelioration. However, effect of NFT of alpha activity on memory is controversial. The current study analyzed previous works in terms of randomized and blinded analyses, training paradigms, and participant characteristics to validate the efficacy of alpha NFT on memory in a healthy population. Objectives: A systematic meta-analysis of studies with randomized controlled trials was performed to explore the effect of alpha NFT on working memory (WM) and episodic memory (EM) in a healthy population. Methods: We searched PubMed, Embase, and Cochrane Library from January 1, 1999, to November 30, 2019. Previous studies were evaluated with the Cochrane risk of bias (RoB). A meta-analysis calculating absolute weighted standardized mean difference (SMD) using random-effects models was employed. Heterogeneity was estimated using I 2 statistics. Funnel plots and Egger's test were performed to evaluate the quality of evidence. Results: Sixteen studies with 217 healthy participants in the control group and 210 participants in the alpha group met the eligibility criteria. Alpha NFT studies with WM measures presented little publication bias ( P = 0.116), and 5 of 7 domains in the Cochrane RoB exhibited a low risk of bias. The overall effect size from 14 WM studies was 0.56 (95% CI 0.31–0.81, P &lt; 0.0001; I 2 = 28%). Six EM studies exhibited an effect size of 0.77 (95% CI 0.06–1.49, P = 0.03; I 2 = 77%). Conclusion: Meta-analysis results suggest that alpha NFT seems to have a positive effect on the WM and EM of healthy participants. Future efforts should focus on the neurophysiological mechanisms of alpha NFT in memory.

View Full Paper →

Balancing the brain of offenders with psychopathy? Resting state EEG and electrodermal activity after a pilot study of brain self-regulation training

Konicar, Lilian, Radev, Stefan, Silvoni, Stefano, Bolinger, Elaina, Veit, Ralf, Strehl, Ute, Vesely, Christine, Plener, Paul L., Poustka, Luise, Birbaumer, Niels (2021) · PloS One

Although investigation of the brains of criminals began quite early in the history of psychophysiological research, little is known about brain plasticity of offenders with psychopathy. Building on our preliminary study reporting successful brain self-regulation using slow cortical potential (SCP) neurofeedback in offenders with psychopathy, we investigated the central nervous and autonomic peripheral changes occurring after brain self-regulation in a group of severe male offenders with psychopathy. Regarding the central nervous system, an overall suppression of the psychopathic overrepresentation of slow frequency bands was found, such as delta and theta band activity, after EEG neurofeedback. In addition, an increase in alpha band activity could be observed after the SCP self-regulation training. Electrodermal activity adaptively changed according to the regulation task, and this flexibility improved over training time. The results of this study point towards a constructive learning process and plasticity in neural and peripheral measures of offenders with psychopathy.

View Full Paper →

Enhancing learning in a perceptual-cognitive training paradigm using EEG-neurofeedback

Parsons, Brendan, Faubert, Jocelyn (2021) · Scientific Reports

This paper provides the framework and supporting evidence for a highly efficient closed-loop paradigm that modifies a classic learning scenario using real-time brain activity in order to improve learning performance in a perceptual-cognitive training paradigm known as 3-dimensional multiple object tracking, or 3D-MOT. Results demonstrate that, over 10 sessions, when manipulating this novel task by using real-time brain signals, speed and degree of learning can be substantially improved compared with a classic learning system or an active sham-control group. Superior performance persists even once the feedback signal is removed, which suggests that the effects of enhanced training are consolidated and do not rely on continued feedback. This type of learning paradigm could contribute to overcoming one of the fundamental limitations of neurofeedback and other cognitive enhancement techniques, a lack of observable transfer effects, by utilizing a method that can be directly integrated into the context in which improved performance is sought.

View Full Paper →

Mobile Neurofeedback for Pain Management in Veterans with TBI and PTSD

Elbogen, Eric B., Alsobrooks, Amber, Battles, Sara, Molloy, Kiera, Dennis, Paul A., Beckham, Jean C., McLean, Samuel A., Keith, Julian R., Russoniello, Carmen (2021) · Pain Medicine (Malden, Mass.)

OBJECTIVE: Chronic pain is common in military veterans with traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Neurofeedback, or electroencephalograph (EEG) biofeedback, has been associated with lower pain but requires frequent travel to a clinic. The current study examined feasibility and explored effectiveness of neurofeedback delivered with a portable EEG headset linked to an application on a mobile device. DESIGN: Open-label, single-arm clinical trial. SETTING: Home, outside of clinic. SUBJECTS: N = 41 veterans with chronic pain, TBI, and PTSD. METHOD: Veterans were instructed to perform "mobile neurofeedback" on their own for three months. Clinical research staff conducted two home visits and two phone calls to provide technical assistance and troubleshoot difficulties. RESULTS: N = 36 veterans returned for follow-up at three months (88% retention). During this time, subjects completed a mean of 33.09 neurofeedback sessions (10 minutes each). Analyses revealed that veterans reported lower pain intensity, pain interference, depression, PTSD symptoms, anger, sleep disturbance, and suicidal ideation after the three-month intervention compared with baseline. Comparing pain ratings before and after individual neurofeedback sessions, veterans reported reduced pain intensity 67% of the time immediately following mobile neurofeedback. There were no serious adverse events reported. CONCLUSIONS: This preliminary study found that veterans with chronic pain, TBI, and PTSD were able to use neurofeedback with mobile devices independently after modest training and support. While a double-blind randomized controlled trial is needed for confirmation, the results show promise of a portable, technology-based neuromodulatory approach for pain management with minimal side effects.

View Full Paper →

Training negative connectivity patterns between the dorsolateral prefrontal cortex and amygdala through fMRI-based neurofeedback to target adolescent socially-avoidant behaviour

Lisk, Stephen, Kadosh, Kathrin Cohen, Zich, Catharina, Haller, Simone Pw, Lau, Jennifer Yf (2020) · Behaviour Research and Therapy

Social anxiety is prevalent in adolescence. Given its role in maintaining fears, reducing social avoidance through cognitive reappraisal may help attenuate social anxiety. We used fMRI-based neurofeedback (NF) to increase 'adaptive' patterns of negative connectivity between the dorsolateral prefrontal cortex (DLPFC) and the amygdala to change reappraisal ability, and alter social avoidance and approach behaviours in adolescents. Twenty-seven female participants aged 13-17 years with varying social anxiety levels completed a fMRI-based NF training task where they practiced cognitive reappraisal strategies, whilst receiving real-time feedback of DLPFC-amygdala connectivity. All participants completed measures of cognitive reappraisal and social approach-avoidance behaviour before and after NF training. Avoidance of happy faces was associated with greater social anxiety pre-training. Participants who were unable to acquire a more negative pattern of connectivity through NF training displayed significantly greater avoidance of happy faces at post-training compared to pre-training. These 'maladaptive' participants also reported significant decreases in re-appraisal ability from pre to post-training. In contrast, those who were able to acquire a more 'adaptive' connectivity pattern did not show these changes in social avoidance and re-appraisal. Future research could consider using strategies to improve the capacity of NF training to boost youth social-approach behaviour.

View Full Paper →
Page 1 of 8Next →

Ready to Apply This Research?

Learn how QEEG brain mapping and neurofeedback can help with brain training. Fill out the form below and we'll share full programs and pricing information with you.

* Required fields