Cerebellum

Research Papers

Computational epidemiology study of homeostatic compensation during sensorimotor aging

Luque, Niceto R., Naveros, Francisco, Sheynikhovich, Denis, Ros, Eduardo, Arleo, Angelo (2022) · Neural Networks: The Official Journal of the International Neural Network Society

The vestibulo-ocular reflex (VOR) stabilizes vision during head motion. Age-related changes of vestibular neuroanatomical properties predict a linear decay of VOR function. Nonetheless, human epidemiological data show a stable VOR function across the life span. In this study, we model cerebellum-dependent VOR adaptation to relate structural and functional changes throughout aging. We consider three neurosynaptic factors that may codetermine VOR adaptation during aging: the electrical coupling of inferior olive neurons, the long-term spike timing-dependent plasticity at parallel fiber - Purkinje cell synapses and mossy fiber - medial vestibular nuclei synapses, and the intrinsic plasticity of Purkinje cell synapses Our cross-sectional aging analyses suggest that long-term plasticity acts as a global homeostatic mechanism that underpins the stable temporal profile of VOR function. The results also suggest that the intrinsic plasticity of Purkinje cell synapses operates as a local homeostatic mechanism that further sustains the VOR at older ages. Importantly, the computational epidemiology approach presented in this study allows discrepancies among human cross-sectional studies to be understood in terms of interindividual variability in older individuals. Finally, our longitudinal aging simulations show that the amount of residual fibers coding for the peak and trough of the VOR cycle constitutes a predictive hallmark of VOR trajectories over a lifetime.

View Full Paper →

Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson's Disease

Philippens, Ingrid H. C. H. M., Wubben, Jacqueline A., Franke, Sigrid K., Hofman, Sam, Langermans, Jan A. M. (2019) · Scientific Reports

Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson's disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson's disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson's disease patients.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss cerebellum and how neurofeedback training can help

* Required fields