Cues
Research Papers
The Treatment of Substance Use Disorders: Recent Developments and New Perspectives
Substance-related disorders are complex psychiatric disorders that are characterized by continued consumption in spite of harmful consequences. Addiction affects various brain networks critically involved in learning, reward, and motivation, as well as inhibitory control. Currently applied therapeutic approaches aim at modification of behavior that ultimately leads to decrease of consumption or abstinence in individuals with substance use disorders. However, traditional treatment methods might benefit from recent neurobiological and cognitive neuroscientific research findings. Novel cognitive-behavioral approaches in the treatment of addictive behavior aim at enhancement of strategies to cope with stressful conditions as well as craving-inducing cues and target erroneous learning mechanisms, including cognitive bias modification, reconsolidation-based interventions, mindfulness-based interventions, virtual-reality-based cue exposure therapy as well as pharmacological augmentation strategies. This review discusses therapeutic strategies that target dysregulated neurocognitive processes associated with the development and maintenance of disordered substance use and may hold promise as effective treatments for substance-related disorders.
View Full Paper →Can neurophysiological markers of anticipation and attention predict ADHD severity and neurofeedback outcomes?
Neurophysiological measures of preparation and attention are often atypical in ADHD. Still, replicated findings that these measures predict which patients improve after Neurofeedback (NF), reveal neurophysiological specificity, and reflect ADHD-severity are limited. METHODS: We analyzed children's preparatory (CNV) and attentional (Cue-P3) brain activity and behavioral performance during a cued Continuous Performance Task (CPT) before and after slow cortical potential (SCP)-NF or semi-active control treatment (electromyogram biofeedback). Mixed-effects models were performed with 103 participants at baseline and 77 were assessed for pre-post comparisons focusing on clinical outcome prediction, specific neurophysiological effects of NF, and associations with ADHD-severity. RESULTS: Attentional and preparatory brain activity and performance were non-specifically reduced after treatment. Preparatory activity in the SCP-NF group increased with clinical improvement. Several performance and brain activity measures predicted non-specific treatment outcome. CONCLUSION: Specific neurophysiological effects after SCP-NF were limited to increased neural preparation associated with improvement on ADHD-subscales, but several performance and neurophysiological measures of attention predicted treatment outcome and reflected symptom severity in ADHD. The results may help to optimize treatment.
View Full Paper →Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study
Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. We conducted a double-blind sham-controlled study on 20 human volunteers (10 females) using a sequential neurofeedback-behavior task with the neurofeedback reflecting the occurrence of β bursts over sensorimotor cortex quantified in real time. The results show that neurofeedback training helps healthy participants learn to volitionally suppress β bursts in the sensorimotor cortex, with training being accompanied by reduced RT in subsequent cued movements. These changes were only significant in the real feedback group but not in the sham group, confirming the effect of neurofeedback training over simple motor imagery. In addition, RTs correlated with the rate and accumulated duration of β bursts in the contralateral motor cortex before the go-cue, but not with averaged β power. The reduced RTs induced by neurofeedback training positively correlated with reduced β bursts across all tested hemispheres. These results strengthen the link between the occurrence of β bursts in the sensorimotor cortex before the go-cue and slowed movement initiation in healthy motor control. The results also highlight the potential benefit of neurofeedback training in facilitating voluntary suppression of β bursts to speed up movement initiation.SIGNIFICANCE STATEMENT This double-blind sham-controlled study suggested that neurofeedback training can facilitate volitional suppression of β bursts in sensorimotor cortex in healthy motor control better than sham feedback. The training was accompanied by reduced reaction time (RT) in subsequent cued movements, and the reduced RT positively correlated with the level of reduction in cortical β bursts before the go-cue, but not with average β power. These results provide further evidence of a causal link between sensorimotor β bursts and movement initiation and suggest that neurofeedback training could potentially be used to train participants to speed up movement initiation.
View Full Paper →Comparing auditory, visual and vibrotactile cues in individuals with Parkinson's disease for reducing risk of falling over different types of soil
INTRODUCTION: Several researchers have demonstrated the positive benefits of auditory and visual cueing in the gait improvements among individuals with Parkinson's disease (PD). However, few studies have evaluated the role of vibrotactile cueing when compared to auditory and visual cueing. This paper compares how these stimuli affect the risk of falling while walking on six types of soil (concrete, sand, parquet, broken stone, two types of carpet). METHODS: An instrumented Timed Up and Go (iTUG) test served to evaluate how audio, visual and vibrotactile cueing can affect the risk of falling of elderly. This pilot study proposes 12 participants with PD (67.7 ± 10.07 years) and nine age-matched controls (66.8 ± 8.0 years). Both groups performed the iTUG test with and without cueing. The cueing frequency was set at 10% above the cadence computed at the lower risk level of falling (walking over the concrete). A computed risk of falling (ROFA) index has been compared to the TUG time (total TUG duration). RESULTS: The index for evaluating the risk of falling appears to have a good reliability (ICC > 0.88) in this pilot study. In addition, the minimal detectable change (MDC) suggests that the proposed index could be more sensitive to the risk of falling variation compared to the TUG time. Moreover, while using the cueing, observed results suggest a significant decrease in the computed risk of falling compared to 'without cueing' for most of types of soil, especially for deformable soils, which can lead to falls. CONCLUSION: When compared to other cueing, it seems that audio could be a better neurofeedback for reducing the risk of falling over different walking surfaces, which represent important risk factors for persons with gait disorder or lost functional autonomy.
View Full Paper →Real-time fMRI in the treatment of nicotine dependence: a conceptual review and pilot studies
Technical advances allowing for the analysis of functional MRI (fMRI) results in real time have led to studies exploring the ability of individuals to use neural feedback signals to modify behavior and regional brain activation. The use of real-time fMRI (rtfMRI) feedback has been explored for therapeutic benefit in a number of disease states, but to our knowledge, the potential therapeutic benefit of rtfMRI feedback in the treatment of addictive disorders has not been explored. This article will provide an overview of the development of rtfMRI and discussion of its potential uses in the treatment of addictions. We also describe a series of pilot studies that highlight some of the technical challenges in developing a rtfMRI feedback paradigm for use in addictions, specifically in nicotine dependence. Because the use of rtfMRI feedback is in its infancy, the work described is focused on establishing some of the basic parameters in optimizing the rtfMRI feedback, such as the type of feedback signal, region of interest for feedback and predicting which subjects are most likely to respond well to training. While rtfMRI feedback remains an intriguing possibility for the treatment of addictions, much work remains to be done in establishing its efficacy.
View Full Paper →Early interaction between perceptual load and involuntary attention: An event-related potential study
Whether selective attention affects C1, the first (earliest) visual cortical component of the event-related potential (ERP), remains controversial. We used a cued, involuntary attention task requiring discrimination of targets under low and high levels of perceptual load to examine early attentional modulation in visual cortex. Potential confounds due to physical stimulus differences between load conditions and cue-target sensory interaction were minimized. An interaction between perceptual load and involuntary attention was observed for the P1m component (peak latency between 100 and 140 ms). Furthermore, the parieto-central C1 component (peak latency 80 ms) was modulated by attention, but only under the high-load condition. Thus, whereas attention typically modulates the later P1 component, attentional modulation of C1 is possible under optimal conditions. Specifically, a high perceptual load is necessary for eliciting this earliest attentional effect on cortical processing.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss cues and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →