brain computer interface (BCI)

Research Papers

Showing 6 of 25

Adaptive P300-Based Brain-Computer Interface for Attention Training: Protocol for a Randomized Controlled Trial

Noble, Sandra-Carina, Woods, Eva, Ward, Tomas, Ringwood, John V (2023) · JMIR Research Protocols

Background The number of people with cognitive deficits and diseases, such as stroke, dementia, or attention-deficit/hyperactivity disorder, is rising due to an aging, or in the case of attention-deficit/hyperactivity disorder, a growing population. Neurofeedback training using brain-computer interfaces is emerging as a means of easy-to-use and noninvasive cognitive training and rehabilitation. A novel application of neurofeedback training using a P300-based brain-computer interface has previously shown potential to improve attention in healthy adults. Objective This study aims to accelerate attention training using iterative learning control to optimize the task difficulty in an adaptive P300 speller task. Furthermore, we hope to replicate the results of a previous study using a P300 speller for attention training, as a benchmark comparison. In addition, the effectiveness of personalizing the task difficulty during training will be compared to a nonpersonalized task difficulty adaptation. Methods In this single-blind, parallel, 3-arm randomized controlled trial, 45 healthy adults will be recruited and randomly assigned to the experimental group or 1 of 2 control groups. This study involves a single training session, where participants receive neurofeedback training through a P300 speller task. During this training, the task’s difficulty is progressively increased, which makes it more difficult for the participants to maintain their performance. This encourages the participants to improve their focus. Task difficulty is either adapted based on the participants’ performance (in the experimental group and control group 1) or chosen randomly (in control group 2). Changes in brain patterns before and after training will be analyzed to study the effectiveness of the different approaches. Participants will complete a random dot motion task before and after the training so that any transfer effects of the training to other cognitive tasks can be evaluated. Questionnaires will be used to estimate the participants’ fatigue and compare the perceived workload of the training between groups. Results This study has been approved by the Maynooth University Ethics Committee (BSRESC-2022-2474456) and is registered on ClinicalTrials.gov (NCT05576649). Participant recruitment and data collection began in October 2022, and we expect to publish the results in 2023. Conclusions This study aims to accelerate attention training using iterative learning control in an adaptive P300 speller task, making it a more attractive training option for individuals with cognitive deficits due to its ease of use and speed. The successful replication of the results from the previous study, which used a P300 speller for attention training, would provide further evidence to support the effectiveness of this training tool. Trial Registration ClinicalTrials.gov NCT05576649; https://clinicaltrials.gov/ct2/show/NCT05576649 International Registered Report Identifier (IRRID) DERR1-10.2196/46135

View Full Paper →

Application of Artificial Intelligence Techniques for Brain–Computer Interface in Mental Fatigue Detection: A Systematic Review (2011–2022)

Yaacob, Hamwira, Hossain, Farhad, Shari, Sharunizam, Khare, Smith K., Ooi, Chui Ping, Acharya, U. Rajendra (2023) · IEEE Access

Mental fatigue is a psychophysical condition with a significant adverse effect on daily life, compromising both physical and mental wellness. We are experiencing challenges in this fast-changing environment, and mental fatigue problems are becoming more prominent. This demands an urgent need to explore an effective and accurate automated system for timely mental fatigue detection. Therefore, we present a systematic review of brain-computer interface (BCI) studies for mental fatigue detection using artificial intelligent (AI) techniques published in Scopus, IEEE Explore, PubMed and Web of Science (WOS) between 2011 and 2022. The Boolean search expression that comprised (((ELECTROENCEPHALOGRAM) AND (BCI)) AND (FATIGUE CLASSIFICATION)) AND (BRAIN-COMPUTER INTERFACE) has been used to select the articles. Through the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology, we selected 39 out of 562 articles. Our review identified the research gap in employing BCI for mental fatigue intervention through automated neurofeedback. The AI techniques employed to develop EEG-based mental fatigue detection are also discussed. We have presented comprehensive challenges and future recommendations from the gaps identified in discussions. The future direction includes data fusion, hybrid classification models, availability of public datasets, uncertainty, explainability, and hardware implementation strategies.

View Full Paper →

Cognitive training based on functional near-infrared spectroscopy neurofeedback for the elderly with mild cognitive impairment: a preliminary study

Lee, Ilju, Kim, Dohyun, Kim, Sehwan, Kim, Hee Jung, Chung, Un Sun, Lee, Jung Jae (2023) · Frontiers in Aging Neuroscience

Introduction Mild cognitive impairment (MCI) is often described as an intermediate stage of the normal cognitive decline associated with aging and dementia. There is a growing interest in various non-pharmacological interventions for MCI to delay the onset and inhibit the progressive deterioration of daily life functions. Previous studies suggest that cognitive training (CT) contributes to the restoration of working memory and that the brain-computer-interface technique can be applied to elicit a more effective treatment response. However, these techniques have certain limitations. Thus, in this preliminary study, we applied the neurofeedback paradigm during CT to increase the working memory function of patients with MCI. Methods Near-infrared spectroscopy (NIRS) was used to provide neurofeedback by measuring the changes in oxygenated hemoglobin in the prefrontal cortex. Thirteen elderly MCI patients who received CT-neurofeedback sessions four times on the left dorsolateral prefrontal cortex (dlPFC) once a week were recruited as participants. Results Compared with pre-intervention, the activity of the targeted brain region increased when the participants first engaged in the training; after 4 weeks of training, oxygen saturation was significantly decreased in the left dlPFC. The participants demonstrated significantly improved working memory compared with pre-intervention and decreased activity significantly correlated with improved cognitive performance. Conclusion Our results suggest that the applications for evaluating brain-computer interfaces can aid in elucidation of the subjective mental workload that may create additional or decreased task workloads due to CT.

View Full Paper →

Neurofeedback Training With an Electroencephalogram-Based Brain-Computer Interface Enhances Emotion Regulation

Huang, Weichen, Wu, Wei, Lucas, Molly V., Huang, Haiyun, Wen, Zhenfu, Li, Yuanqing (2023) · IEEE Transactions on Affective Computing

Emotion regulation plays a vital role in human beings daily lives by helping them deal with social problems and protects mental and physical health. However, objective evaluation of the efficacy of emotion regulation and assessment of the improvement in emotion regulation ability at the individual level remain challenging. In this study, we leveraged neurofeedback training to design a real-time EEG-based brain-computer interface (BCI) system for users to effectively regulate their emotions. Twenty healthy subjects performed 10 BCI-based neurofeedback training sessions to regulate their emotion towards a specific emotional state (positive, negative, or neutral), while their EEG signals were analyzed in real time via machine learning to predict their emotional states. The prediction results were presented as feedback on the screen to inform the subjects of their immediate emotional state, based on which the subjects could update their strategies for emotion regulation. The experimental results indicated that the subjects improved their ability to regulate these emotions through our BCI neurofeedback training. Further EEG-based spectrum analysis revealed how each emotional state was related to specific EEG patterns, which were progressively enhanced through long-term training. These results together suggested that long-term EEG-based neurofeedback training could be a promising tool for helping people with emotional or mental disorders.

View Full Paper →

A Novel Brain–Computer Interface Virtual Environment for Neurofeedback During Functional MRI

Baqapuri, Halim I., Roes, Linda D., Zvyagintsev, Mikhail, Ramadan, Souad, Keller, Micha, Roecher, Erik, Zweerings, Jana, Klasen, Martin, Gur, Ruben C., Mathiak, Klaus (2021) · Frontiers in Neuroscience

Virtual environments (VEs), in the recent years, have become more prevalent in neuroscience. These VEs can offer great flexibility, replicability, and control over the presented stimuli in an immersive setting. With recent developments, it has become feasible to achieve higher-quality visuals and VEs at a reasonable investment. Our aim in this project was to develop and implement a novel real-time functional magnetic resonance imaging (rt-fMRI)–based neurofeedback (NF) training paradigm, taking into account new technological advances that allow us to integrate complex stimuli into a visually updated and engaging VE. We built upon and developed a first-person shooter in which the dynamic change of the VE was the feedback variable in the brain–computer interface (BCI). We designed a study to assess the feasibility of the BCI in creating an immersive VE for NF training. In a randomized single-blinded fMRI-based NF-training session, 24 participants were randomly allocated into one of two groups: active and reduced contingency NF. All participants completed three runs of the shooter-game VE lasting 10 min each. Brain activity in a supplementary motor area region of interest regulated the possible movement speed of the player’s avatar and thus increased the reward probability. The gaming performance revealed that the participants were able to actively engage in game tasks and improve across sessions. All 24 participants reported being able to successfully employ NF strategies during the training while performing in-game tasks with significantly higher perceived NF control ratings in the NF group. Spectral analysis showed significant differential effects on brain activity between the groups. Connectivity analysis revealed significant differences, showing a lowered connectivity in the NF group compared to the reduced contingency-NF group. The self-assessment manikin ratings showed an increase in arousal in both groups but failed significance. Arousal has been linked to presence, or feelings of immersion, supporting the VE’s objective. Long paradigms, such as NF in MRI settings, can lead to mental fatigue; therefore, VEs can help overcome such limitations. The rewarding achievements from gaming targets can lead to implicit learning of self-regulation and may broaden the scope of NF applications.

View Full Paper →

EEG-Based Anxious States Classification Using Affective BCI-Based Closed Neurofeedback System

Chen, Chao, Yu, Xuecong, Belkacem, Abdelkader Nasreddine, Lu, Lin, Li, Penghai, Zhang, Zufeng, Wang, Xiaotian, Tan, Wenjun, Gao, Qiang, Shin, Duk, Wang, Changming, Sha, Sha, Zhao, Xixi, Ming, Dong (2021) · Journal of Medical and Biological Engineering

Purpose: Anxiety disorder is one of the psychiatric disorders that involves extreme fear or worry, which can change the balance of chemicals in the brain. To the best of our knowledge, the evaluation of anxiety state is still based on some subjective questionnaires and there is no objective standard assessment yet. Unlike other methods, our approach focuses on study the neural changes to identify and classify the anxiety state using electroencephalography (EEG) signals. Methods: We designed a closed neurofeedback experiment that contains three experimental stages to adjust subjects’ mental state. The EEG resting state signal was recorded from thirty-four subjects in the first and third stages while EEG-based mindfulness recording was recorded in the second stage. At the end of each stage, the subjects were asked to fill a Visual Analogue Scale (VAS). According to their VAS score, the subjects were classified into three groups: non-anxiety, moderate or severe anxiety groups. Results: After processing the EEG data of each group, support vector machine (SVM) classifiers were able to classify and identify two mental states (non-anxiety and anxiety) using the Power Spectral Density (PSD) as patterns. The highest classification accuracies using Gaussian kernel function and polynomial kernel function are 92.48 ± 1.20% and 88.60 ± 1.32%, respectively. The highest average of the classification accuracies for healthy subjects is 95.31 ± 1.97% and for anxiety subjects is 87.18 ± 3.51%. Conclusions: The results suggest that our proposed EEG neurofeedback-based classification approach is efficient for developing affective BCI system for detection and evaluation of anxiety disorder states.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss brain computer interface (bci) and how neurofeedback training can help

* Required fields