
Depression
Depression treatment with neurofeedback: brain training protocols, clinical research, and integrated approaches for mood regulation.
Blog Articles

Research Papers
Showing 6 of 68Application of functional connectivity neurofeedback in patients with treatment-resistant depression: A preliminary report
Functional connectivity neurofeedback (FCNef) is a technique that modulates synchronous neural activity through training and is being investigated as a potential novel treatment for patients suffering from treatment-resistant depression (TRD). An FCNef protocol, based on the analysis of resting-state functional imaging data from a large cohort of depressed individuals, has been proposed to promote negative functional connectivity between the dorsolateral prefrontal cortex and the posterior cingulate cortex (DLPFC-PCC FC). This study aimed to assess the therapeutic efficacy and practicality of the protocol in a small sample of TRD patients. Of the six patients recruited, five completed the FCNef sessions. Depression and rumination scores significantly improved post-treatment, however, there were no significant changes in DLPFC-PCC FC. The study demonstrated efficacy of FCNef in ameliorating depressive symptoms, yet, it also indicated that the training itself may be burdensome for depressed patients, as evidenced by participants reporting fatigue (one of whom dropped out). Thus, a more efficient and less burdensome protocol is needed for future investigations and applications.
View Full Paper →Real-Time fMRI Functional Connectivity Neurofeedback Reducing Repetitive Negative Thinking in Depression: A Double-Blind, Randomized, Sham-Controlled Proof-of-Concept Trial
INTRODUCTION: Repetitive negative thinking (RNT) is a cognitive process focusing on self-relevant and negative experiences, leading to a poor prognosis of major depressive disorder (MDD). We previously identified that connectivity between the precuneus/posterior cingulate cortex (PCC) and right temporoparietal junction (rTPJ) was positively correlated with levels of RNT. OBJECTIVE: In this double-blind, randomized, sham-controlled, proof-of-concept trial, we employed real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) to delineate the neural processes that may be causally linked to RNT and could potentially become treatment targets for MDD. METHODS: MDD-affected individuals were assigned to either active (n = 20) or sham feedback group (n = 19). RNT was measured by the Ruminative Response Scale-brooding subscale (RRS-B) before and 1 week after the intervention. RESULTS: Individuals in the active but not in the sham group showed a significant reduction in the RRS-B; however, a greater reduction in the PCC-rTPJ connectivity was unrelated to a greater reduction in the RRS-B. Exploratory analyses revealed that a greater reduction in the retrosplenial cortex (RSC)-rTPJ connectivity yielded a more pronounced reduction in the RRS-B in the active but not in the sham group. CONCLUSIONS: RtfMRI-nf was effective in reducing RNT. Considering the underlying mechanism of rtfMIR-nf, the RSC and rTPJ could be part of a network (i.e., default mode network) that might collectively affect the intensity of RNT. Understanding the relationship between the functional organization of targeted neural changes and clinical metrics, such as RNT, has the potential to guide the development of mechanism-based treatment of MDD.
View Full Paper →Reducing default mode network connectivity with mindfulness-based fMRI neurofeedback: a pilot study among adolescents with affective disorder history
Adolescents experience alarmingly high rates of major depressive disorder (MDD), however, gold-standard treatments are only effective for ~50% of youth. Accordingly, there is a critical need to develop novel interventions, particularly ones that target neural mechanisms believed to potentiate depressive symptoms. Directly addressing this gap, we developed mindfulness-based fMRI neurofeedback (mbNF) for adolescents that aims to reduce default mode network (DMN) hyperconnectivity, which has been implicated in the onset and maintenance of MDD. In this proof-of-concept study, adolescents (n = 9) with a lifetime history of depression and/or anxiety were administered clinical interviews and self-report questionnaires, and each participant's DMN and central executive network (CEN) were personalized using a resting state fMRI localizer. After the localizer scan, adolescents completed a brief mindfulness training followed by a mbNF session in the scanner wherein they were instructed to volitionally reduce DMN relative to CEN activation by practicing mindfulness meditation. Several promising findings emerged. First, mbNF successfully engaged the target brain state during neurofeedback; participants spent more time in the target state with DMN activation lower than CEN activation. Second, in each of the nine adolescents, mbNF led to significantly reduced within-DMN connectivity, which correlated with post-mbNF increases in state mindfulness. Last, a reduction of within-DMN connectivity mediated the association between better mbNF performance and increased state mindfulness. These findings demonstrate that personalized mbNF can effectively and non-invasively modulate the intrinsic networks associated with the emergence and persistence of depressive symptoms during adolescence.
View Full Paper →16 Aberrant emotional memory encoding in a transdiagnostic sample of patients with intrusive memories
Emotion can affect the way in which experiences are stored in our memory. The dual representation account proposes that traumatic events may be encoded as fragmented sensory-perceptual details without a broader conceptual organisation. This can result in involuntary retrieval of perceptual information triggered by environmental cues without the associated context – a phenomenon referred to as intrusive memories.Currently, it is unknown whether individuals who experience intrusive memories have an underlying vulnerability to aberrant memory encoding, which may lead to the onset or maintenance of symptoms.In Experiment 1, we examined memory recall for neutral and negative images in a transdiagnostic sample of patients with intrusive memories (N = 36), compared to healthy controls (N = 44). Clinical diagnoses in the patient sample included Post-Traumatic Stress Disorder, Major Depressive Disorder, Social Anxiety Disorder, Generalised Anxiety Disorder, Panic Disorder and Other Specified Feeding or Eating Disorders. We excluded participants currently taking psychotropic medication. At encoding, participants viewed neutral, negative and mixed valence image pairs. In the test phase, participants were presented with cues and, if recognised, were asked to recall the associated image. We found a significant group effect, with patients demonstrating impaired item memory for negative images [F(1,280) = 4.435, p = 0.036], relative to healthy controls. This group difference might suggest that individuals with intrusive memories experienced greater sensitivity to negative stimuli, leading to disruptions in memory encoding. Recent work highlights attention maintenance on threat and high levels of threat-related emotional arousal in anxiety- and fear-related disorders which may be one factor driving the disruption to item memory observed in our clinical population.For Experiment 2, in a separate sample of healthy participants (N = 18) we measured eye-tracking behaviour during the encoding phase of the same task. Healthy participants showed greater item memory [F(3, 136 = 2.893, p = 0.0377] and avoidance of fixation [F(1, 110) = 4.898, p = 0.029] on highly arousing, negative stimuli relative to neutral. This might suggest that a shift in attention away from negative stimuli prevents item memory impairments for emotional information.Our future work will identify biological factors driving attentional biases and higher emotional arousal in clinical populations.
View Full Paper →Effect of neurofeedback therapy on neurological post-COVID-19 complications (A pilot study)
OBJECTIVE: Anxiety, fatigue and depression are common neurological manifestations after COVID-19. So far, post-COVID complications were treated by rehabilitation, oxygen therapy and immunotherapy. Effects of neurofeedback on post-COVID complications and their potential interrelatedness have not been studied yet. In this pilot study, we investigated the effectiveness of neurofeedback (Othmer method) for treatment of fatigue, anxiety, and depression after COVID-19. METHODS: 10 participants met inclusion criteria for having positive anamnesis of at least one of the following complications following COVID-19: fatigue, anxiety, and depression which were measured by questionnaires. ANOVA was used for calculating differences in questionnaire score before and after neurofeedback. Pearson's correlation coefficient was used to calculate correlations between anxiety, depression and fatigue. RESULTS: After five neurofeedback sessions, there came to significant reduction of severity of post-COVID anxiety and depression persisting for at least one month. Effect of neurofeedback on fatigue was insignificant. Severity of anxiety, fatigue and depression as well as reductions in depression and fatigue were positively correlated with each other. CONCLUSION: These findings showed effectiveness neurofeedback for reducing anxiety and depression after COVID-19 and for studying correlations between neurological complications after COVID-19. However, since our pilot clinical trial was open-label, it is hard to differentiate between neurofeedback-specific and unspecific effects on our participants. Future randomized controlled trials with more robust sample are necessary to investigate feasibility of neurofeedback for post-COVID neurological complications. The study has identification number trial ID ISRCTN49037874 in ISRCTN register of clinical trials (Retrospectively registered).
View Full Paper →Efficacy of bio- and neurofeedback for depression: a meta-analysis
BACKGROUND: For many years, biofeedback and neurofeedback have been implemented in the treatment of depression. However, the effectiveness of these techniques on depressive symptomatology is still controversial. Hence, we conducted a meta-analysis of studies extracted from PubMed, Scopus, Web of Science and Embase. METHODS: Two different strings were considered for each of the two objectives of the study: A first group comprising studies patients with major depressive disorder (MDD) and a second group including studies targeting depressive symptomatology reduction in other mental or medical conditions. RESULTS: In the first group of studies including patients with MDD, the within-group analyses yielded an effect size of Hedges' g = 0.717, while the between-group analysis an effect size of Hedges' g = 1.050. Moderator analyses indicate that treatment efficacy is only significant when accounting for experimental design, in favor of randomized controlled trials (RCTs) in comparison to non RCTs, whereas the type of neurofeedback, trial design, year of publication, number of sessions, age, sex and quality of study did not influence treatment efficacy. In the second group of studies, a small but significant effect between groups was found (Hedges' g = 0.303) in favor of bio- and neurofeedback against control groups. Moderator analyses revealed that treatment efficacy was not moderated by any of the sociodemographic and clinical variables. CONCLUSIONS: Heart rate variability (HRV) biofeedback and neurofeedback are associated with a reduction in self-reported depression. Despite the fact that the field has still a large room for improvement in terms of research quality, the results presented in this study suggests that both modalities may become relevant complementary strategies for the treatment of MDD and depressive symptomatology in the coming years.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss depression and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →