Adolescents

Research Papers

Self-regulation of the posterior cingulate cortex with real-time fMRI neurofeedback augmented mindfulness training in healthy adolescents: A nonrandomized feasibility study

Kirlic, Namik, Cohen, Zsofia P., Tsuchiyagaito, Aki, Misaki, Masaya, McDermott, Timothy J., Aupperle, Robin L., Stewart, Jennifer L., Singh, Manpreet K., Paulus, Martin P., Bodurka, Jerzy (2022) · Cognitive, Affective & Behavioral Neuroscience

Mindfulness training (MT) promotes the development of one's ability to observe and attend to internal and external experiences with objectivity and nonjudgment with evidence to improve psychological well-being. Real-time functional MRI neurofeedback (rtfMRI-nf) is a noninvasive method of modulating activity of a brain region or circuit. The posterior cingulate cortex (PCC) has been hypothesized to be an important hub instantiating a mindful state. This nonrandomized, single-arm study examined the feasibility and tolerability of training typically developing adolescents to self-regulate the posterior cingulate cortex (PCC) using rtfMRI-nf during MT. Thirty-four adolescents (mean age: 15 years; 14 females) completed the neurofeedback augmented mindfulness training task, including Focus-on-Breath (MT), Describe (self-referential thinking), and Rest conditions, across three neurofeedback and two non-neurofeedback runs (Observe, Transfer). Self-report assessments demonstrated the feasibility and tolerability of the task. Neurofeedback runs differed significantly from non-neurofeedback runs for the Focus-on-Breath versus Describe contrast, characterized by decreased activity in the PCC during the Focus-on-Breath condition (z = -2.38 to -6.27). MT neurofeedback neural representation further involved the medial prefrontal cortex, anterior cingulate cortex, dorsolateral prefrontal cortex, posterior insula, hippocampus, and amygdala. State awareness of physical sensations increased following rtfMRI-nf and was maintained at 1-week follow-up (Cohens' d = 0.69). Findings demonstrate feasibility and tolerability of rtfMRI-nf in healthy adolescents, replicates the role of PCC in MT, and demonstrate a potential neuromodulatory mechanism to leverage and streamline the learning of mindfulness practice. ( ClinicalTrials.gov identifier #NCT04053582; August 12, 2019).

View Full Paper →

Volitional modification of brain activity in adolescents with Autism Spectrum Disorder: A Bayesian analysis of Slow Cortical Potential neurofeedback

Konicar, L., Radev, S., Prillinger, K., Klöbl, M., Diehm, R., Birbaumer, N., Lanzenberger, R., Plener, P. L., Poustka, L. (2021) · NeuroImage. Clinical

Autism spectrum disorder is (ASD) characterized by a persisting triad of impairments of social interaction, language as well as inflexible, stereotyped and ritualistic behaviors. Increasingly, scientific evidence suggests a neurobiological basis of these emotional, social and cognitive deficits in individuals with ASD. The aim of this randomized controlled brain self-regulation intervention study was to investigate whether the core symptomatology of ASD could be reduced via an electroencephalography (EEG) based brain self-regulation training of Slow Cortical Potentials (SCP). 41 male adolescents with ASD were recruited and allocated to a) an experimental group undergoing 24 sessions of EEG-based brain training (n1 = 21), or to b) an active control group undergoing conventional treatment (n2 = 20), that is, clinical counseling during a 3-months intervention period. We employed real-time neurofeedback training recorded from a fronto-central electrode intended to enable participants to volitionally regulate their brain activity. Core autistic symptomatology was measured at six time points during the intervention and analyzed with Bayesian multilevel approach to characterize changes in core symptomatology. Additional Bayesian models were formulated to describe the neural dynamics of the training process as indexed by SCP (time-domain) and power density (PSD, frequency-domain) measures. The analysis revealed a substantial improvement in the core symptomatology of ASD in the experimental group (reduction of 21.38 points on the Social Responsiveness Scale, SD = 5.29), which was slightly superior to that observed in the control group (evidence Ratio = 5.79). Changes in SCP manifested themselves as different trajectories depending on the different feedback conditions and tasks. Further, the model of PSD revealed a continuous decrease in delta power, parallel to an increase in alpha power. Most notably, a non-linear (quadratic) model turned out to be better at predicting the data than a linear model across all analyses. Taken together, our analyses suggest that behavioral and neural processes of change related to neurofeedback training are complex and non-linear. Moreover, they have implications for the design of future trials and training protocols.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss adolescents and how neurofeedback training can help

* Required fields