alpha activity

Research Papers

Showing 6 of 8

Comparison of QEEG Findings before and after Onset of Post-COVID-19 Brain Fog Symptoms

Kopańska, Marta, Ochojska, Danuta, Muchacka, Renata, Dejnowicz-Velitchkov, Agnieszka, Banaś-Ząbczyk, Agnieszka, Szczygielski, Jacek (2022) · Sensors

Previous research and clinical reports have shown that some individuals after COVID-19 infection may demonstrate symptoms of so-called brain fog, manifested by cognitive impairment and disorganization in behavior. Meanwhile, in several other conditions, related to intellectual function, a specific pattern of changes in electric brain activity, as recorded by quantitative electroencephalography (QEEG) has been documented. We hypothesized, that in post-COVID brain fog, the subjective complaints may be accompanied by objective changes in the QEEG profile. In order to test this hypothesis, we have performed an exploratory study on the academic staff of our University with previous records of QEEG originating in the pre-COVID-19 era. Among them, 20 subjects who revealed neurological problems in the cognitive sphere (confirmed as covid fog/brain fog by a clinical specialist) after COVID-19 infection were identified. In those individuals, QEEG was performed. We observed, that opposite to baseline QEEG records, increased Theta and Alpha activity, as well as more intensive sensimotor rhythm (SMR) in C4 (right hemisphere) in relation to C3 (left hemisphere). Moreover, a visible increase in Beta 2 in relation to SMR in both hemispheres could be documented. Summarizing, we could demonstrate a clear change in QEEG activity patterns in individuals previously not affected by COVID-19 and now suffering from post-COVID-19 brain fog. These preliminary results warrant further interest in delineating their background. Here, both neuroinflammation and psychological stress, related to Sars-CoV2-infection may be considered. Based on our observation, the relevance of QEEG examination as a supportive tool for post-COVID clinical workup and for monitoring the treatment effects is also to be explored.

View Full Paper →

Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention‐Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD

Cañigueral, Roser, Palmer, Jason, Ashwood, Karen L., Azadi, Bahar, Asherson, Philip, Bolton, Patrick F., McLoughlin, Gráinne, Tye, Charlotte (2021) · Journal of Child Psychology and Psychiatry

Background: Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) share impairments in top-down and bottom-up modulation of attention. However, it is not yet well understood if co-occurrence of ASD and ADHD reflects a distinct or additive profile of attention deficits. We aimed to characterise alpha oscillatory activity (stimulus-locked alpha desynchronisation and prestimulus alpha) as an index of integration of top-down and bottom-up attentional processes in ASD and ADHD. Methods: Children with ASD, ADHD, comorbid ASD+ADHD, and typically-developing children completed a fixed-choice reaction-time task (‘Fast task’) while neurophysiological activity was recorded. Outcome measures were derived from source-decomposed neurophysiological data. Main measures of interest were prestimulus alpha power and alpha desynchronisation (difference between poststimulus and prestimulus alpha). Poststimulus activity linked to attention allocation (P1, P3), attentional control (N2), and cognitive control (theta synchronisation, 100–600 ms) was also examined. ANOVA was used to test differences across diagnostics groups on these measures. Spearman’s correlations were used to investigate the relationship between attentional control processes (alpha oscillations), central executive functions (theta synchronisation), early visual processing (P1), and behavioural performance. Results: Children with ADHD (ADHD and ASD+ADHD) showed attenuated alpha desynchronisation, indicating poor integration of top-down and bottom-up attentional processes. Children with ADHD showed reduced N2 and P3 amplitudes, while children with ASD (ASD and ASD+ADHD) showed greater N2 amplitude, indicating atypical attentional control and attention allocation across ASD and ADHD. In the ASD group, prestimulus alpha and theta synchronisation were negatively correlated, and alpha desynchronisation and theta synchronisation were positively correlated, suggesting an atypical association between attentional control processes and executive functions. Conclusions: ASD and ADHD are associated with disorder-specific impairments, while children with ASD+ADHD overall presented an additive profile with attentional deficits of both disorders. Importantly, these findings may inform the improvement of transdiagnostic procedures and optimisation of personalised intervention approaches. Keywords: Autism Spectrum Disorder; ADHD; attention; comorbidity.

View Full Paper →

Neurofeedback of Alpha Activity on Memory in Healthy Participants: A Systematic Review and Meta-Analysis

Yeh, Wen-Hsiu, Hsueh, Jen-Jui, Shaw, Fu-Zen (2021) · Frontiers in Human Neuroscience

Background: Neurofeedback training (NFT) has recently been proposed as a valuable technique for cognitive enhancement and psychiatric amelioration. However, effect of NFT of alpha activity on memory is controversial. The current study analyzed previous works in terms of randomized and blinded analyses, training paradigms, and participant characteristics to validate the efficacy of alpha NFT on memory in a healthy population. Objectives: A systematic meta-analysis of studies with randomized controlled trials was performed to explore the effect of alpha NFT on working memory (WM) and episodic memory (EM) in a healthy population. Methods: We searched PubMed, Embase, and Cochrane Library from January 1, 1999, to November 30, 2019. Previous studies were evaluated with the Cochrane risk of bias (RoB). A meta-analysis calculating absolute weighted standardized mean difference (SMD) using random-effects models was employed. Heterogeneity was estimated using I 2 statistics. Funnel plots and Egger's test were performed to evaluate the quality of evidence. Results: Sixteen studies with 217 healthy participants in the control group and 210 participants in the alpha group met the eligibility criteria. Alpha NFT studies with WM measures presented little publication bias ( P = 0.116), and 5 of 7 domains in the Cochrane RoB exhibited a low risk of bias. The overall effect size from 14 WM studies was 0.56 (95% CI 0.31–0.81, P < 0.0001; I 2 = 28%). Six EM studies exhibited an effect size of 0.77 (95% CI 0.06–1.49, P = 0.03; I 2 = 77%). Conclusion: Meta-analysis results suggest that alpha NFT seems to have a positive effect on the WM and EM of healthy participants. Future efforts should focus on the neurophysiological mechanisms of alpha NFT in memory.

View Full Paper →

Neurofeedback Training for Cognitive and Motor Function Rehabilitation in Chronic Stroke: Two Case Reports

Nan, Wenya, Dias, Ana Paula Barbosa, Rosa, Agostinho C. (2019) · Frontiers in Neurology

Stroke is a debilitating neurological condition which usually results in the abnormal electrical brain activity and the impairment of sensation, motor, or cognition functions. In this context, neurofeedback training, i.e., a non-invasive and relatively low cost technique that contributes to neuroplasticity and behavioral performance, might be promising for stroke rehabilitation. We intended to explore neurofeedback training on a 63-year-old male patient and a 77-year-old female patient with chronic stroke. Both of them had suffered from an ischemic stroke for rather long period (more than 3 years) and could not gain further improvement by traditional therapy. The neurofeedback training was designed to enhance alpha activity by 15 sessions distributed over 2 months, for the purpose of overall cognitive improvement and hopefully also motor function improvement for the female patient. We found that the two patients showed alpha enhancement during NFT compared to eyes open baseline within most sessions. Furthermore, both patients reduced their anxiety and depression level. The male patient showed an evolution in speech pattern in terms of naming, sentences completion and verbal fluency, while the female patient improved functionality of the march. These results suggested that alpha neurofeedback training could provide a spectrum of improvements, providing new hope for chronic stroke patients who could not gain further improvements through traditional therapies. © 2019 Nan, Dias and Rosa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

View Full Paper →

Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress

Vanneste, Sven, Joos, Kathleen, Ost, Jan, De Ridder, Dirk (2018) · Neurobiology of Stress

Background: In this study we are using source localized neurofeedback to moderate tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network. Hypothesis: We hypothesize that up-training alpha and down-training beta and gamma activity in the posterior cingulate cortex has a moderating effect on tinnitus related distress by influencing neural activity of the target region as well as the connectivity within the default network and other functionally connected brain areas. Methods: Fifty-eight patients with chronic tinnitus were included in the study. Twenty-three tinnitus patients received neurofeedback training of the posterior cingulate cortex with the aim of up-training alpha and down-training beta and gamma activity, while 17 patients underwent training of the lingual gyrus as a control situation. A second control group consisted of 18 tinnitus patients on a waiting list for future tinnitus treatment. Results: This study revealed that neurofeedback training of the posterior cingulate cortex results in a significant decrease of tinnitus related distress. No significant effect on neural activity of the target region could be obtained. However, functional and effectivity connectivity changes were demonstrated between remote brain regions or functional networks as well as by altering cross frequency coupling of the posterior cingulate cortex. Conclusion: This suggests that neurofeedback could remove the information, processed in beta and gamma, from the carrier wave, alpha, which transports the high frequency information and influences the salience attributed to the tinnitus sound. Based on the observation that much pathology is the result of an abnormal functional connectivity within and between neural networks various pathologies should be considered eligible candidates for the application of source localized EEG based neurofeedback training.

View Full Paper →

Infra-Low Frequency Neurofeedback in Depression: Three case studies

Grin-Yatsenko, Vera, Othmer, Siegfried, Ponomarev, Valery, Evdokimov, Sergey, Konoplev, Yuri, Kropotov, Juri (2018) · NeuroRegulation

Electroencephalographic (EEG) findings on depressive patients indicate theta and alpha activity higher than in normal controls. Extensive literature reports on the effectiveness of neurofeedback techniques in the treatment of cognitive and behavioral disorders by training the patients to modulate their brain activities, as reflected in their electroencephalogram. Three unmedicated, depressed individuals participated in this study of infra-low frequency neurofeedback (ILF NF) training. Along with the pre- and posttreatment Depression Rating Scales assessment, quantitative EEGs (qEEG) were recorded in eyes-open and eyes-closed resting states and during the visual cued Go/NoGo task before and after 20 sessions of training. Along with remission of the clinical symptoms of depression, significant decrease of theta power over frontal and central areas was observed in all three patients under all test conditions. These qEEG dynamics might be a correlate of ILF NF-related recovery of the appropriate level of frontal cortical activation.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss alpha activity and how neurofeedback training can help

* Required fields