Imagination
Research Papers
Showing 6 of 10Frontoparietal Dysconnection in Covert Bipedal Activity for Enhancing the Performance of the Motor Preparation-Based Brain-Computer Interface
Motor-based brain-computer interfaces (BCIs) were developed from the brain signals during motor imagery (MI), motor preparation (MP), and motor execution (ME). Motor-based BCIs provide an active rehabilitation scheme for post-stroke patients. However, BCI based solely on MP was rarely investigated. Since MP is the precedence phase before MI or ME, MP-BCI could potentially detect brain commands at an earlier state. This study proposes a bipedal MP-BCI system, which is actuated by the reduction in frontoparietal connectivity strength. Three substudies, including bipedal classification, neurofeedback, and post-stroke analysis, were performed to validate the performance of our proposed model. In bipedal classification, functional connectivity was extracted by Pearson's correlation model from electroencephalogram (EEG) signals recorded while the subjects were performing MP and MI. The binary classification of MP achieved short-lived peak accuracy of 73.73(±7.99)% around 200-400 ms post-cue. The peak accuracy was found synchronized to the MP-related potential and the decrement in frontoparietal connection strength. The connection strengths of the right frontal and left parietal lobes in the alpha range were found negatively correlated to the classification accuracy. In the subjective neurofeedback study, the majority of subjects reported that motor preparation instead of the motor imagery activated the frontoparietal dysconnection. Post-stroke study also showed that patients exhibit lower frontoparietal connections compared to healthy subjects during both MP and ME phases. These findings suggest that MP reduced alpha band functional frontoparietal connectivity and the EEG signatures of left and right foot MP could be discriminated more effectively during this phase. A neurofeedback paradigm based on the frontoparietal network could also be utilized to evaluate post-stroke rehabilitation training.
View Full Paper →Mental imagery content is associated with disease severity and specific brain functional connectivity changes in patients with Parkinson's disease
Mental imagery is the mental re-creation of perceptual experiences, events and scenarios, and motor acts. In our previous study, we assessed whether motor imagery (MI) training combined with functional magnetic resonance imaging-based neurofeedback could improve the motor function of nondemented subjects with mild Parkinson's disease (PD) (N = 22). We used visual imagery (VI) (e.g., of scenes or events, but not of self-movements) training without neurofeedback for the control group (N = 22). Notably, both groups showed significant and comparable improvement in motor function after four weeks of daily imagery practice. In this study, we further examined the neural correlates of the motor enhancement as a result of the VI training by analyzing the self-reported VI content during daily practice and relating its quality to the functional connectivity characteristics of the same subjects. We demonstrated that the VI practice encompassed multisensory, spatial, affective, and executive processes all of which are also important for motor function in real life. Subjects with worse global disease severity also showed poorer quality of the VI content. Finally, the quality of the VI content showed significant positive correlations with the functional connectivity changes during the VI tasks in brain areas supporting visuospatial and sensorimotor processes. Our findings suggest that mental imagery training combining VI and MI may enhance motor function in patients with mild PD, and more broadly, underline the importance of incorporating self-reports of thoughts and experiences in neuroimaging studies that examine the brain mechanisms of complex cognitive processes especially in neuropsychiatric patient populations.
View Full Paper →Neurofeedback-guided kinesthetic motor imagery training in Parkinson's disease: Randomized trial
BACKGROUND: Parkinson's disease (PD) causes difficulty with maintaining the speed, size, and vigor of movements, especially when they are internally generated. We previously proposed that the insula is important in motivating intentional movement via its connections with the dorsomedial frontal cortex (dmFC). We demonstrated that subjects with PD can increase the right insula-dmFC functional connectivity using fMRI-based neurofeedback (NF) combined with kinesthetic motor imagery (MI). The current study is a randomized clinical trial testing whether NF-guided kinesthetic MI training can improve motor performance and increase task-based and resting-state right insula-dmFC functional connectivity in subjects with PD. METHODS: We assigned nondemented subjects with mild PD (Hoehn & Yahr stage ≤ 3) to the experimental kinesthetic MI with NF (MI-NF, n = 22) and active control visual imagery (VI, n = 22) groups. Only the MI-NF group received NF-guided MI training (10-12 runs). The NF signal was based on the right insula-dmFC functional connectivity strength. All subjects also practiced their respective imagery tasks at home daily for 4 weeks. Post-training changes in 1) task-based and resting-state right insula-dmFC functional connectivity were the primary imaging outcomes, and 2) MDS-UPDRS motor exam and motor function scores were the primary and secondary clinical outcomes, respectively. RESULTS: The MI-NF group was not significantly different from the VI group in any of the primary imaging or clinical outcome measures. The MI-NF group reported subjective improvement in kinesthetic body awareness. There was significant and comparable improvement only in motor function scores in both groups (secondary clinical outcome). This improvement correlated with NF regulation of the right insula-dmFC functional connectivity only in the MI-NF group. Both groups showed specific training effects in whole-brain functional connectivity with distinct neural circuits supporting kinesthetic motor and visual imagery (exploratory imaging outcome). CONCLUSIONS: The functional connectivity-based NF regulation was unsuccessful, however, both kinesthetic MI and VI practice improved motor function in our cohort with mild PD.
View Full Paper →Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study
Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. We conducted a double-blind sham-controlled study on 20 human volunteers (10 females) using a sequential neurofeedback-behavior task with the neurofeedback reflecting the occurrence of β bursts over sensorimotor cortex quantified in real time. The results show that neurofeedback training helps healthy participants learn to volitionally suppress β bursts in the sensorimotor cortex, with training being accompanied by reduced RT in subsequent cued movements. These changes were only significant in the real feedback group but not in the sham group, confirming the effect of neurofeedback training over simple motor imagery. In addition, RTs correlated with the rate and accumulated duration of β bursts in the contralateral motor cortex before the go-cue, but not with averaged β power. The reduced RTs induced by neurofeedback training positively correlated with reduced β bursts across all tested hemispheres. These results strengthen the link between the occurrence of β bursts in the sensorimotor cortex before the go-cue and slowed movement initiation in healthy motor control. The results also highlight the potential benefit of neurofeedback training in facilitating voluntary suppression of β bursts to speed up movement initiation.SIGNIFICANCE STATEMENT This double-blind sham-controlled study suggested that neurofeedback training can facilitate volitional suppression of β bursts in sensorimotor cortex in healthy motor control better than sham feedback. The training was accompanied by reduced reaction time (RT) in subsequent cued movements, and the reduced RT positively correlated with the level of reduction in cortical β bursts before the go-cue, but not with average β power. These results provide further evidence of a causal link between sensorimotor β bursts and movement initiation and suggest that neurofeedback training could potentially be used to train participants to speed up movement initiation.
View Full Paper →The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.
View Full Paper →Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex
Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss imagination and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →