Alzheimer's disease
Research Papers
Benefits of a 12-Week Non-Drug “Brain Fitness Program” for Patients with Attention-Deficit/Hyperactive Disorder, Post-Concussion Syndrome, or Memory Loss
Background: Non-pharmacologic interventions can potentially improve cognitive function, sleep, and/or mood in patients with attention-deficit/hyperactive disorder (ADHD), post-concussion syndrome (PCS), or memory loss. Objective: We evaluated the benefits of a brain rehabilitation program in an outpatient neurology practice that consists of targeted cognitive training, lifestyle coaching, and electroencephalography (EEG)-based neurofeedback, twice weekly (90 minutes each), for 12 weeks. Methods: 223 child and adult patients were included: 71 patients with ADHD, 88 with PCS, and 64 with memory loss (mild cognitive impairment or subjective cognitive decline). Patients underwent a complete neurocognitive evaluation, including tests for Verbal Memory, Complex Attention, Processing Speed, Executive Functioning, and Neurocognition Index. They completed questionnaires about sleep, mood, diet, exercise, anxiety levels, and depression—as well as underwent quantitative EEG—at the beginning and the end of the program. Results: Pre-post test score comparison demonstrated that all patient subgroups experienced statistically significant improvements on most measures, especially the PCS subgroup, which experienced significant score improvement on all measures tested (p≤0.0011; dz≥0.36). After completing the program, 60% to 90% of patients scored higher on cognitive tests and reported having fewer cognitive and emotional symptoms. The largest effect size for pre-post score change was improved executive functioning in all subgroups (ADHD dz= 0.86; PCS dz= 0.83; memory dz= 1.09). Conclusion: This study demonstrates that a multimodal brain rehabilitation program can have benefits for patients with ADHD, PCS, or memory loss and supports further clinical trials in this field.
View Full Paper →Neurofeedback and the Aging Brain: A Systematic Review of Training Protocols for Dementia and Mild Cognitive Impairment
Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment.
View Full Paper →Toward Personalizing Alzheimer’s Disease Therapy Using an Intelligent Cognitive Control System
Subjective cognitive decline is an early state of Alzheimer’s Disease which affects almost 10 million people every year. It results from negative emotions such as frustration which are more present than healthy adults. For this reason, our work focuses on relaxing subjective cognitive decline patients using virtual reality environments to improve their memory performance. We proposed in our previous work a neurofeedback approach which adapts the virtual environment to each patient according to their emotions using a Neural Agent. We found that the Neural Agent can adapt the environment to each participant but have limitations. This work is a continuation of our approach in which we propose a Limbic Agent able to monitor the interactions between the Neural Agent and patients’ emotional reactions, learn from these interactions, and modify the Neural Agent in order to enhance the adaptation to each patient with an Intelligent Cognitive Control System. Our goal is to create a system able to support the Limbic System which is the main area in charge of controlling emotions and creating memory in the human brain. We used data collected form our previous work to train the Limbic Agent and results showed that the agent is capable of modifying the weight of existing rules, generating new intervention rules, and predicting if they will work or not.
Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment
Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for nearly 70% of the more than 46 million dementia cases estimated worldwide. Although there is no cure for AD, early diagnosis and an accurate characterization of the disease progression can improve the quality of life of AD patients and their caregivers. Currently, AD diagnosis is carried out using standardized mental status examinations, which are commonly assisted by expensive neuroimaging scans and invasive laboratory tests, thus rendering the diagnosis time consuming and costly. Notwithstanding, over the last decade, electroencephalography (EEG) has emerged as a noninvasive alternative technique for the study of AD, competing with more expensive neuroimaging tools, such as MRI and PET. This paper reports on the results of a systematic review on the utilization of resting-state EEG signals for AD diagnosis and progression assessment. Recent journal articles obtained from four major bibliographic databases were analyzed. A total of 112 journal articles published from January 2010 to February 2018 were meticulously reviewed, and relevant aspects of these papers were compared across articles to provide a general overview of the research on this noninvasive AD diagnosis technique. Finally, recommendations for future studies with resting-state EEG were presented to improve and facilitate the knowledge transfer among research groups.
View Full Paper →Cognitive Improvement and Brain Changes after Real-Time Functional MRI Neurofeedback Training in Healthy Elderly and Prodromal Alzheimer’s Disease
Background: Cognitive decline is characteristic for Alzheimer's disease (AD) and also for healthy ageing. As a proof-of-concept study, we examined whether this decline can be counteracted using real-time fMRI neurofeedback training. Visuospatial memory and the parahippocampal gyrus (PHG) were targeted. Methods: Sixteen healthy elderly subjects (mean age 63.5 years, SD = 6.663) and 10 patients with prodromal AD (mean age 66.2 years, SD = 8.930) completed the experiment. Four additional healthy subjects formed a sham-feedback condition to validate the paradigm. The protocol spanned five examination days (T1-T5). T1 contained a neuropsychological pre-test, the encoding of a real-world footpath, and an anatomical MRI scan of the brain. T2-T4 included the fMRI neurofeedback training paradigm, in which subjects learned to enhance activation of the left PHG while recalling the path encoded on T1. At T5, the neuropsychological post-test and another anatomical MRI brain scan were performed. The neuropsychological battery included the Montreal Cognitive Assessment (MoCA); the Visual and Verbal Memory Test (VVM); subtests of the Wechsler Memory Scale (WMS); the Visual Patterns Test; and Trail Making Tests (TMT) A and B. results: Healthy elderly and patients with prodromal AD showed improved visuospatial memory performance after neurofeedback training. Healthy subjects also performed better in a working-memory task (WMS backward digit-span) and in the MoCA. Both groups were able to elicit parahippocampal activation during training, but no significant changes in brain activation were found over the course of the training. However, Granger-causality-analysis revealed changes in cerebral connectivity over the course of the training, involving the parahippocampus and identifying the precuneus as main driver of activation in both groups. Voxel-based morphometry showed increases in grey matter volumes in the precuneus and frontal cortex. Neither cognitive enhancements, nor parahippocampal activation were found in the control group undergoing sham-feedback.conclusion: These fndings suggest that cognitive decline, either related to prodromal AD or healthy ageing, could be counteracted using fMRI-based neurofeedback. Future research needs to determine the potential of this method as a treatment tool.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss alzheimer's disease and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →