virtual reality

Research Papers

Showing 6 of 12

Case Report: Virtual Reality Neurofeedback Therapy as a Novel Modality for Sustained Analgesia in Centralized Pain Syndromes

Orakpo, Nnamdi, Vieux, Ulrick, Castro-Nuñez, Cristian (2021) · Frontiers in Psychiatry

Neurofeedback (NFB) Therapy is a form of biofeedback, using the electroencephalogram (EEG) that has been in use since the 1970s, serving as a non-pharmacological intervention for epilepsy and psychiatric conditions such as anxiety, depression, insomnia, PTSD, post-concussive syndrome, and now, centralized pain. Chronic pain can increase neuronal activity and eventually causes poor modulation of pain messages. With the emergence of Virtual Reality (VR) in acute pain management, and the contraindications of opioids in chronic pain, applying novel biotechnologies seems like the next frontier in multimodal pain management. In this study, the VR and NFB technologies were fused together (VR-NFB) and used as a novel treatment modality for a 55-year-old woman who suffered from chronic pain secondary to spondylolisthesis with cervical, thoracic, and lumbar disc herniations after a motor vehicle accident with comorbid depression, anxiety, sleep deprivation, and difficulty with activities of daily living, and inability to participate in physical therapy. Our case reports on the sustained analgesia achieved for 1 year after a trial of VR-NFB, and the usefulness of neuromodulation in centralized pain syndromes.

View Full Paper →

Clinical Effects of Immersive Multimodal BCI-VR Training after Bilateral Neuromodulation with rTMS on Upper Limb Motor Recovery after Stroke. A Study Protocol for a Randomized Controlled Trial

Sánchez-Cuesta, Francisco José, Arroyo-Ferrer, Aida, González-Zamorano, Yeray, Vourvopoulos, Athanasios, Badia, Sergi Bermúdez I., Figuereido, Patricia, Serrano, José Ignacio, Romero, Juan Pablo (2021) · Medicina (Kaunas, Lithuania)

Background and Objectives: The motor sequelae after a stroke are frequently persistent and cause a high degree of disability. Cortical ischemic or hemorrhagic strokes affecting the cortico-spinal pathways are known to cause a reduction of cortical excitability in the lesioned area not only for the local connectivity impairment but also due to a contralateral hemisphere inhibitory action. Non-invasive brain stimulation using high frequency repetitive magnetic transcranial stimulation (rTMS) over the lesioned hemisphere and contralateral cortical inhibition using low-frequency rTMS have been shown to increase the excitability of the lesioned hemisphere. Mental representation techniques, neurofeedback, and virtual reality have also been shown to increase cortical excitability and complement conventional rehabilitation. Materials and Methods: We aim to carry out a single-blind, randomized, controlled trial aiming to study the efficacy of immersive multimodal Brain-Computer Interfacing-Virtual Reality (BCI-VR) training after bilateral neuromodulation with rTMS on upper limb motor recovery after subacute stroke (>3 months) compared to neuromodulation combined with conventional motor imagery tasks. This study will include 42 subjects in a randomized controlled trial design. The main expected outcomes are changes in the Motricity Index of the Arm (MI), dynamometry of the upper limb, score according to Fugl-Meyer for upper limb (FMA-UE), and changes in the Stroke Impact Scale (SIS). The evaluation will be carried out before the intervention, after each intervention and 15 days after the last session. Conclusions: This trial will show the additive value of VR immersive motor imagery as an adjuvant therapy combined with a known effective neuromodulation approach opening new perspectives for clinical rehabilitation protocols.

View Full Paper →

Toward Personalizing Alzheimer’s Disease Therapy Using an Intelligent Cognitive Control System

Ben Abdessalem, Hamdi, Frasson, Claude (2021)

Subjective cognitive decline is an early state of Alzheimer’s Disease which affects almost 10 million people every year. It results from negative emotions such as frustration which are more present than healthy adults. For this reason, our work focuses on relaxing subjective cognitive decline patients using virtual reality environments to improve their memory performance. We proposed in our previous work a neurofeedback approach which adapts the virtual environment to each patient according to their emotions using a Neural Agent. We found that the Neural Agent can adapt the environment to each participant but have limitations. This work is a continuation of our approach in which we propose a Limbic Agent able to monitor the interactions between the Neural Agent and patients’ emotional reactions, learn from these interactions, and modify the Neural Agent in order to enhance the adaptation to each patient with an Intelligent Cognitive Control System. Our goal is to create a system able to support the Limbic System which is the main area in charge of controlling emotions and creating memory in the human brain. We used data collected form our previous work to train the Limbic Agent and results showed that the agent is capable of modifying the weight of existing rules, generating new intervention rules, and predicting if they will work or not.

Virtual Reality–Based Biofeedback and Guided Meditation in Rheumatology: A Pilot Study

Venuturupalli, R. Swamy, Chu, Timothy, Vicari, Marcus, Kumar, Amit, Fortune, Natalie, Spielberg, Ben (2019) · ACR Open Rheumatology

Objective As technology continues to improve, it plays an increasingly vital role in the practice of medicine. This study aimed to assess the feasibility of the implementation of virtual reality ( VR ) in a rheumatology clinic as a platform to administer guided meditation and biofeedback as a means of reducing chronic pain. Methods Twenty participants were recruited from a rheumatology clinic. These participants included adults with physician‐diagnosed autoimmune disorders who were on a stable regimen of medication and had a score of at least 5 on the pain Visual Analog Scale ( VAS ) for a minimum of 4 days during the prior 30 days. VAS , part of most composite outcome measurements in rheumatology, is an instrument used to assess pain that consists of a straight line with the endpoints ranging from “no pain at all” and “pain as bad as it could be.” Patients were randomized into two groups that differed in the order in which they experienced the two VR modules. One module consisted of a guided meditation ( GM ) environment, whereas the other module consisted of a respiratory biofeedback ( BFD ) environment. Data on pain and anxiety levels were gathered before, during, and after the two modules. Results The three most common diagnoses among participants were rheumatoid arthiritis ( RA ), lupus, and fibromyalgia. There was a significant reduction in VAS scores after BFD and GM ( P values = 0.01 and 0.04, respectively). There was a significant reduction in Facial Anxiety Scale after the GM compared with the BFD ( P values = 0.02 and 0.08, respectively). Conclusion This novel study demonstrated that VR could be a feasible solution for the management of pain and anxiety in rheumatology patients. Further trials with varying treatment exposures and durations are required to solidify the viability of VR as a treatment option in rheumatology clinics.

View Full Paper →

e-Addictology: An Overview of New Technologies for Assessing and Intervening in Addictive Behaviors

Ferreri, Florian, Bourla, Alexis, Mouchabac, Stephane, Karila, Laurent (2018) · Frontiers in Psychiatry

Background: New technologies can profoundly change the way we understand psychiatric pathologies and addictive disorders. New concepts are emerging with the development of more accurate means of collecting live data, computerized questionnaires, and the use of passive data. Digital phenotyping, a paradigmatic example, refers to the use of computerized measurement tools to capture the characteristics of different psychiatric disorders. Similarly, machine learning-a form of artificial intelligence-can improve the classification of patients based on patterns that clinicians have not always considered in the past. Remote or automated interventions (web-based or smartphone-based apps), as well as virtual reality and neurofeedback, are already available or under development. Objective: These recent changes have the potential to disrupt practices, as well as practitioners' beliefs, ethics and representations, and may even call into question their professional culture. However, the impact of new technologies on health professionals' practice in addictive disorder care has yet to be determined. In the present paper, we therefore present an overview of new technology in the field of addiction medicine. Method: Using the keywords [e-health], [m-health], [computer], [mobile], [smartphone], [wearable], [digital], [machine learning], [ecological momentary assessment], [biofeedback] and [virtual reality], we searched the PubMed database for the most representative articles in the field of assessment and interventions in substance use disorders. Results: We screened 595 abstracts and analyzed 92 articles, dividing them into seven categories: e-health program and web-based interventions, machine learning, computerized adaptive testing, wearable devices and digital phenotyping, ecological momentary assessment, biofeedback, and virtual reality. Conclusion: This overview shows that new technologies can improve assessment and interventions in the field of addictive disorders. The precise role of connected devices, artificial intelligence and remote monitoring remains to be defined. If they are to be used effectively, these tools must be explained and adapted to the different profiles of physicians and patients. The involvement of patients, caregivers and other health professionals is essential to their design and assessment.

View Full Paper →

Emotion Regulation Using Virtual Environments and Real-Time fMRI Neurofeedback

Lorenzetti, Valentina, Melo, Bruno, Basílio, Rodrigo, Suo, Chao, Yücel, Murat, Tierra-Criollo, Carlos J., Moll, Jorge (2018) · Frontiers in Neurology

Neurofeedback (NFB) enables the voluntary regulation of brain activity, with promising applications to enhance and recover emotion and cognitive processes, and their underlying neurobiology. It remains unclear whether NFB can be used to aid and sustain complex emotions, with ecological validity implications. We provide a technical proof of concept of a novel real-time functional magnetic resonance imaging (rtfMRI) NFB procedure. Using rtfMRI-NFB, we enabled participants to voluntarily enhance their own neural activity while they experienced complex emotions. The rtfMRI-NFB software (FRIEND Engine) was adapted to provide a virtual environment as brain computer interface (BCI) and musical excerpts to induce two emotions (tenderness and anguish), aided by participants' preferred personalized strategies to maximize the intensity of these emotions. Eight participants from two experimental sites performed rtfMRI-NFB on two consecutive days in a counterbalanced design. On one day, rtfMRI-NFB was delivered to participants using a region of interest (ROI) method, while on the other day using a support vector machine (SVM) classifier. Our multimodal VR/NFB approach was technically feasible and robust as a method for real-time measurement of the neural correlates of complex emotional states and their voluntary modulation. Guided by the color changes of the virtual environment BCI during rtfMRI-NFB, participants successfully increased in real time, the activity of the septo-hypothalamic area and the amygdala during the ROI based rtfMRI-NFB, and successfully evoked distributed patterns of brain activity classified as tenderness and anguish during SVM-based rtfMRI-NFB. Offline fMRI analyses confirmed that during tenderness rtfMRI-NFB conditions, participants recruited the septo-hypothalamic area and other regions ascribed to social affiliative emotions (medial frontal/temporal pole and precuneus). During anguish rtfMRI-NFB conditions, participants recruited the amygdala and other dorsolateral prefrontal and additional regions associated with negative affect. These findings were robust and were demonstrable at the individual subject level, and were reflected in self-reported emotion intensity during rtfMRI-NFB, being observed with both ROI and SVM methods and across the two sites. Our multimodal VR/rtfMRI-NFB protocol provides an engaging tool for brain-based interventions to enhance emotional states in healthy subjects and may find applications in clinical conditions associated with anxiety, stress and impaired empathy among others.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss virtual reality and how neurofeedback training can help

* Required fields