Real-time fMRI
Research Papers
Showing 6 of 40Correlations Between the DMN and the Smoking Cessation Outcome of a Real-Time fMRI Neurofeedback Supported Exploratory Therapy Approach: Descriptive Statistics on Tobacco-Dependent Patients
The aim of this study was to explore the potential of default mode network (DMN) functional connectivity for predicting the success of smoking cessation in patients with tobacco dependence in the context of a real-time function al MRI (RT-fMRI) neurofeedback (NF) supported therapy.Fifty-four tobacco-dependent patients underwent three RT-fMRI-NF sessions including resting-state functional connectivity (RSFC) runs over a period of 4 weeks during professionally assisted smoking cessation. Patients were randomized into two groups that performed either active NF of an addiction-related brain region or sham NF. After preprocessing, the RSFC baseline data were statistically evaluated using seed-based ROI (SBA) approaches taking into account the smoking status of patients after 3 months (abstinence/relapse).The results of the real study group showed a widespread functional connectivity in the relapse subgroup (n = 10) exceeding the DMN template and mainly low correlations and anticorrelations in the within-seed analysis. In contrast, the connectivity pattern of the abstinence subgroup (n = 8) primarily contained the core DMN in the seed-to-whole-brain analysis and a left lateralized correlation pattern in the within-seed analysis. Calculated Multi-Subject Dictionary Learning (MSDL) matrices showed anticorrelations between DMN regions and salience regions in the abstinence group. Concerning the sham group, results of the relapse subgroup (n = 4) and the abstinence subgroup (n = 6) showed similar trends only in the within-seed analysis.In the setting of a RT-fMRI-NF-assisted therapy, a widespread intrinsic DMN connectivity and a low negative coupling between the DMN and the salience network (SN) in patients with tobacco dependency during early withdrawal may be useful as an early indicator of later therapy nonresponse.
View Full Paper →Differential mechanisms of posterior cingulate cortex downregulation and symptom decreases in posttraumatic stress disorder and healthy individuals using real-time fMRI neurofeedback
BACKGROUND: Intrinsic connectivity networks, including the default mode network (DMN), are frequently disrupted in individuals with posttraumatic stress disorder (PTSD). The posterior cingulate cortex (PCC) is the main hub of the posterior DMN, where the therapeutic regulation of this region with real-time fMRI neurofeedback (NFB) has yet to be explored. METHODS: We investigated PCC downregulation while processing trauma/stressful words over 3 NFB training runs and a transfer run without NFB (total n = 29, PTSD n = 14, healthy controls n = 15). We also examined the predictive accuracy of machine learning models in classifying PTSD versus healthy controls during NFB training. RESULTS: Both the PTSD and healthy control groups demonstrated reduced reliving symptoms in response to trauma/stressful stimuli, where the PTSD group additionally showed reduced symptoms of distress. We found that both groups were able to downregulate the PCC with similar success over NFB training and in the transfer run, although downregulation was associated with unique within-group decreases in activation within the bilateral dmPFC, bilateral postcentral gyrus, right amygdala/hippocampus, cingulate cortex, and bilateral temporal pole/gyri. By contrast, downregulation was associated with increased activation in the right dlPFC among healthy controls as compared to PTSD. During PCC downregulation, right dlPFC activation was negatively correlated to PTSD symptom severity scores and difficulties in emotion regulation. Finally, machine learning algorithms were able to classify PTSD versus healthy participants based on brain activation during NFB training with 80% accuracy. CONCLUSIONS: This is the first study to investigate PCC downregulation with real-time fMRI NFB in both PTSD and healthy controls. Our results reveal acute decreases in symptoms over training and provide converging evidence for EEG-NFB targeting brain networks linked to the PCC.
View Full Paper →Functional and clinical outcomes of FMRI-based neurofeedback training in patients with alcohol dependence: a pilot study
Identifying treatment options for patients with alcohol dependence is challenging. This study investigates the application of real-time functional MRI (rtfMRI) neurofeedback (NF) to foster resistance towards craving-related neural activation in alcohol dependence. We report a double-blind, placebo-controlled rtfMRI study with three NF sessions using alcohol-associated cues as an add-on therapy to the standard treatment. Fifty-two patients (45 male; 7 female) diagnosed with alcohol dependence were recruited in Munich, Germany. RtfMRI data were acquired in three sessions and clinical abstinence was evaluated 3 months after the last NF session. Before the NF training, BOLD responses and clinical data did not differ between groups, apart from anger and impulsiveness. During NF training, BOLD responses of the active group were decreased in medial frontal areas/caudate nucleus, and increased, e.g. in the cuneus/precuneus and occipital cortex. Within the active group, the down-regulation of neuronal responses was more pronounced in patients who remained abstinent for at least 3 months after the intervention compared to patients with a relapse. As BOLD responses were comparable between groups before the NF training, functional variations during NF cannot be attributed to preexisting distinctions. We could not demonstrate that rtfMRI as an add-on treatment in patients with alcohol dependence leads to clinically superior abstinence for the active NF group after 3 months. However, the study provides evidence for a targeted modulation of addiction-associated brain responses in alcohol dependence using rtfMRI.
View Full Paper →Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis
Neurofeedback using real-time functional MRI (RT-fMRI-NF) is an innovative technique that allows to voluntarily modulate a targeted brain response and its associated behavior. Despite promising results in the current literature, its effectiveness on symptoms management in psychiatric disorders is not yet clearly demonstrated. Here, we provide 1) a state-of-art qualitative review of RT-fMRI-NF studies aiming at alleviating clinical symptoms in a psychiatric population; 2) a quantitative evaluation (meta-analysis) of RT-fMRI-NF effectiveness on various psychiatric disorders and 3) methodological suggestions for future studies. Thirty-one clinical trials focusing on psychiatric disorders were included and categorized according to standard diagnostic categories. Among the 31 identified studies, 22 consisted of controlled trials, of which only eight showed significant clinical improvement in the experimental vs. control group after the training. Nine studies found an effect at follow-up on ADHD symptoms, emotion dysregulation, facial emotion processing, depressive symptoms, hallucinations, psychotic symptoms, and specific phobia. Within-group meta-analysis revealed large effects of the NF training on depressive symptoms right after the training (g = 0.81, p < 0.01) and at follow-up (g = 1.19, p < 0.01), as well as medium effects on anxiety (g = 0.44, p = 0.01) and emotion regulation (g = 0.48, p < 0.01). Between-group meta-analysis showed a medium effect on depressive symptoms (g = 0.49, p < 0.01) and a large effect on anxiety (g = 0.77, p = 0.01). However, the between-studies heterogeneity is very high. The use of RT-fMRI-NF as a treatment for psychiatric symptoms is promising, however, further double-blind, multicentric, randomized-controlled trials are warranted.
View Full Paper →Real-Time fMRI Neurofeedback Training Changes Brain Degree Centrality and Improves Sleep in Chronic Insomnia Disorder: A Resting-State fMRI Study
Background Chronic insomnia disorder (CID) is considered a major public health problem worldwide. Therefore, innovative and effective technical methods for studying the pathogenesis and clinical comprehensive treatment of CID are urgently needed. Methods Real-time fMRI neurofeedback (rtfMRI-NF), a new intervention, was used to train 28 patients with CID to regulate their amygdala activity for three sessions in 6 weeks. Resting-state fMRI data were collected before and after training. Then, voxel-based degree centrality (DC) method was used to explore the effect of rtfMRI-NF training. For regions with altered DC, we determined the specific connections to other regions that most strongly contributed to altered functional networks based on DC. Furthermore, the relationships between the DC value of the altered regions and changes in clinical variables were determined. Results Patients with CID showed increased DC in the right postcentral gyrus, Rolandic operculum, insula, and superior parietal gyrus and decreased DC in the right supramarginal gyrus, inferior parietal gyrus, angular gyrus, middle occipital gyrus, and middle temporal gyrus. Seed-based functional connectivity analyses based on the altered DC regions showed more details about the altered functional networks. Clinical scores in Pittsburgh sleep quality index, insomnia severity index (ISI), Beck depression inventory, and Hamilton anxiety scale decreased. Furthermore, a remarkable positive correlation was found between the changed ISI score and DC values of the right insula. Conclusions This study confirmed that amygdala-based rtfMRI-NF training altered the intrinsic functional hubs, which reshaped the abnormal functional connections caused by insomnia and improved the sleep of patients with CID. These findings contribute to our understanding of the neurobiological mechanism of rtfMRI-NF in insomnia treatment. However, additional double-blinded controlled clinical trials with larger sample sizes need to be conducted to confirm the effect of rtfMRI-NF from this initial study.
View Full Paper →A Novel Brain–Computer Interface Virtual Environment for Neurofeedback During Functional MRI
Virtual environments (VEs), in the recent years, have become more prevalent in neuroscience. These VEs can offer great flexibility, replicability, and control over the presented stimuli in an immersive setting. With recent developments, it has become feasible to achieve higher-quality visuals and VEs at a reasonable investment. Our aim in this project was to develop and implement a novel real-time functional magnetic resonance imaging (rt-fMRI)–based neurofeedback (NF) training paradigm, taking into account new technological advances that allow us to integrate complex stimuli into a visually updated and engaging VE. We built upon and developed a first-person shooter in which the dynamic change of the VE was the feedback variable in the brain–computer interface (BCI). We designed a study to assess the feasibility of the BCI in creating an immersive VE for NF training. In a randomized single-blinded fMRI-based NF-training session, 24 participants were randomly allocated into one of two groups: active and reduced contingency NF. All participants completed three runs of the shooter-game VE lasting 10 min each. Brain activity in a supplementary motor area region of interest regulated the possible movement speed of the player’s avatar and thus increased the reward probability. The gaming performance revealed that the participants were able to actively engage in game tasks and improve across sessions. All 24 participants reported being able to successfully employ NF strategies during the training while performing in-game tasks with significantly higher perceived NF control ratings in the NF group. Spectral analysis showed significant differential effects on brain activity between the groups. Connectivity analysis revealed significant differences, showing a lowered connectivity in the NF group compared to the reduced contingency-NF group. The self-assessment manikin ratings showed an increase in arousal in both groups but failed significance. Arousal has been linked to presence, or feelings of immersion, supporting the VE’s objective. Long paradigms, such as NF in MRI settings, can lead to mental fatigue; therefore, VEs can help overcome such limitations. The rewarding achievements from gaming targets can lead to implicit learning of self-regulation and may broaden the scope of NF applications.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss real-time fmri and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →