validity
validity relates to brain function and cognitive performance. Peak Brain Institute explores how QEEG brain mapping and neurofeedback training connect to validity through evidence-based approaches. Explore our 2 research papers covering this topic.
Research Papers
EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants
A re-emergence of research on EEG-neurofeedback followed controlled evidence of clinical benefits and validation of cognitive/affective gains in healthy participants including correlations in support of feedback learning mediating outcome. Controlled studies with healthy and elderly participants, which have increased exponentially, are reviewed including protocols from the clinic: sensory-motor rhythm, beta1 and alpha/theta ratios, down-training theta maxima, and from neuroscience: upper-alpha, theta, gamma, alpha desynchronisation. Outcome gains include sustained attention, orienting and executive attention, the P300b, memory, spatial rotation, RT, complex psychomotor skills, implicit procedural memory, recognition memory, perceptual binding, intelligence, mood and well-being. Twenty-three of the controlled studies report neurofeedback learning indices along with beneficial outcomes, of which eight report correlations in support of a meditation link, results which will be supplemented by further creativity and the performing arts evidence in Part II. Validity evidence from optimal performance studies represents an advance for the neurofeedback field demonstrating that cross fertilisation between clinical and optimal performance domains will be fruitful. Theoretical and methodological issues are outlined further in Part III.
View Full Paper →Validity and Reliability of Quantitative Electroencephalography
Reliability and validity are statistical concepts that are reviewed and then applied to the field of quantitative electroencephalography (qEEG). The review of the scientific literature demonstrated high levels of split-half and test–retest reliability of qEEG and convincing content and predictive validity as well as other forms of validity. QEEG is distinguished fromnonquantitative EEG (“eyeball” examination of EEG traces), with the latter showing low reliability (e.g., 0.2–0.29) and poor interrater agreement for nonepilepsy evaluation. In contrast, qEEG is greater than 0.9 reliable with as little as 40-s epochs and remains stable with high test–retest reliability over many days and weeks. Predictive validity of qEEG is established by significant and replicable correlations with clinical measures and accurate predictions of outcome and performance on neuropsychological tests. In contrast, non-qEEG or eyeball visual examination of the EEG traces in cases of nonepilepsy has essentially zero predictive validity. Content validity of qEEG is established by correlations with independent measures such as the MRI, PET and SPECT, the Glasgow Coma Score, neuropsychological tests, and so on, where the scientific literature again demonstrates significant correlations between qEEG and independent measures known to be related to various clinical disorders. The ability to test and evaluate the concepts of reliability and validity are demonstrated by mathematical proof and simulation where one can demonstrate test–retest reliability as well as zero physiological validity of coherence and phase differences when using an average reference and Laplacian montage.
View Full Paper →Related Research Collections
Related Topics
Ready to Optimize Your Brain?
Schedule a free consultation to discuss validity and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →