supplementary motor area
Research Papers
fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery
Compared to functional magnetic resonance imaging (fMRI), functional near infrared spectroscopy (fNIRS) has several advantages that make it particularly interesting for neurofeedback (NFB). A pre-requisite for NFB applications is that with fNIRS, signals from the brain region of interest can be measured. This study focused on the supplementary motor area (SMA). Healthy older participants (N = 16) completed separate continuous-wave (CW-) fNIRS and (f)MRI sessions. Data were collected for executed and imagined hand movements (motor imagery, MI), and for MI of whole body movements. Individual anatomical data were used to (i) define the regions of interest for fMRI analysis, to (ii) extract the fMRI BOLD response from the cortical regions corresponding to the fNIRS channels, and (iii) to select fNIRS channels. Concentration changes in oxygenated ([Formula: see text]) and deoxygenated ([Formula: see text]) hemoglobin were considered in the analyses. Results revealed subtle differences between the different MI tasks, indicating that for whole body MI movements as well as for MI of hand movements [Formula: see text] is the more specific signal. Selection of the fNIRS channel set based on individual anatomy did not improve the results. Overall, the study indicates that in terms of spatial specificity and task sensitivity SMA activation can be reliably measured with CW-fNIRS.
View Full Paper →A Novel Brain–Computer Interface Virtual Environment for Neurofeedback During Functional MRI
Virtual environments (VEs), in the recent years, have become more prevalent in neuroscience. These VEs can offer great flexibility, replicability, and control over the presented stimuli in an immersive setting. With recent developments, it has become feasible to achieve higher-quality visuals and VEs at a reasonable investment. Our aim in this project was to develop and implement a novel real-time functional magnetic resonance imaging (rt-fMRI)–based neurofeedback (NF) training paradigm, taking into account new technological advances that allow us to integrate complex stimuli into a visually updated and engaging VE. We built upon and developed a first-person shooter in which the dynamic change of the VE was the feedback variable in the brain–computer interface (BCI). We designed a study to assess the feasibility of the BCI in creating an immersive VE for NF training. In a randomized single-blinded fMRI-based NF-training session, 24 participants were randomly allocated into one of two groups: active and reduced contingency NF. All participants completed three runs of the shooter-game VE lasting 10 min each. Brain activity in a supplementary motor area region of interest regulated the possible movement speed of the player’s avatar and thus increased the reward probability. The gaming performance revealed that the participants were able to actively engage in game tasks and improve across sessions. All 24 participants reported being able to successfully employ NF strategies during the training while performing in-game tasks with significantly higher perceived NF control ratings in the NF group. Spectral analysis showed significant differential effects on brain activity between the groups. Connectivity analysis revealed significant differences, showing a lowered connectivity in the NF group compared to the reduced contingency-NF group. The self-assessment manikin ratings showed an increase in arousal in both groups but failed significance. Arousal has been linked to presence, or feelings of immersion, supporting the VE’s objective. Long paradigms, such as NF in MRI settings, can lead to mental fatigue; therefore, VEs can help overcome such limitations. The rewarding achievements from gaming targets can lead to implicit learning of self-regulation and may broaden the scope of NF applications.
View Full Paper →Randomized, Sham-Controlled Trial of Real-Time Functional Magnetic Resonance Imaging Neurofeedback for Tics in Adolescents With Tourette Syndrome
BACKGROUND: Activity in the supplementary motor area (SMA) has been associated with tics in Tourette syndrome (TS). The aim of this study was to test a novel intervention-real-time functional magnetic resonance imaging neurofeedback from the SMA-for reduction of tics in adolescents with TS. METHODS: Twenty-one adolescents with TS were enrolled in a double-blind, randomized, sham-controlled, crossover study involving two sessions of neurofeedback from their SMA. The primary outcome measure of tic severity was the Yale Global Tic Severity Scale administered by an independent evaluator before and after each arm. The secondary outcome was control over the SMA assessed in neuroimaging scans, in which subjects were cued to increase/decrease activity in SMA without receiving feedback. RESULTS: All 21 subjects completed both arms of the study and all assessments. Participants had significantly greater reduction of tics on the Yale Global Tic Severity Scale after real neurofeedback as compared with the sham control (p < .05). Mean Yale Global Tic Severity Scale Total Tic score decreased from 25.2 ± 4.6 at baseline to 19.9 ± 5.7 at end point in the neurofeedback condition and from 24.8 ± 8.1 to 23.3 ± 8.5 in the sham control condition. The 3.8-point difference is clinically meaningful and corresponds to an effect size of 0.59. However, there were no differences in changes on the secondary measure of control over the SMA. CONCLUSIONS: This first randomized controlled trial of real-time functional magnetic resonance imaging neurofeedback in adolescents with TS suggests that this neurofeedback intervention may be helpful for improving tic symptoms. However, no effects were found in terms of change in control over the SMA, the hypothesized mechanism of action.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss supplementary motor area and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →