resting state – fMRI
Research Papers
Mindfulness Training Improves Cognition and Strengthens Intrinsic Connectivity Between the Hippocampus and Posteromedial Cortex in Healthy Older Adults
Maintaining optimal cognitive functioning throughout the lifespan is a public health priority. Evaluation of cognitive outcomes following interventions to promote and preserve brain structure and function in older adults, and associated neural mechanisms, are therefore of critical importance. In this randomized controlled trial, we examined the behavioral and neural outcomes following mindfulness training (n = 72), compared to a cognitive fitness program (n = 74) in healthy, cognitively normal, older adults (65-80 years old). To assess cognitive functioning, we used the Preclinical Alzheimer Cognitive Composite (PACC), which combines measures of episodic memory, executive function, and global cognition. We hypothesized that mindfulness training would enhance cognition, increase intrinsic functional connectivity measured with magnetic resonance imaging (MRI) between the hippocampus and posteromedial cortex, as well as promote increased gray matter volume within those regions. Following the 8-week intervention, the mindfulness training group showed improved performance on the PACC, while the control group did not. Furthermore, following mindfulness training, greater improvement on the PACC was associated with a larger increase in intrinsic connectivity within the default mode network, particularly between the right hippocampus and posteromedial cortex and between the left hippocampus and lateral parietal cortex. The cognitive fitness training group did not show such effects. These findings demonstrate that mindfulness training improves cognitive performance in cognitively intact older individuals and strengthens connectivity within the default mode network, which is particularly vulnerable to aging affects. Clinical Trial Registration: [https://clinicaltrials.gov/ct2/show/NCT02628548], identifier [NCT02628548].
View Full Paper →Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder
Background We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. Method The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Results Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback regulation success. Conclusions Neurofeedback training to increase amygdala hemodynamic activity during positive AM recall increased amygdala connectivity with regions involved in self-referential, salience, and reward processing. Results suggest future targets for neurofeedback interventions, particularly interventions involving the precuneus.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss resting state – fmri and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →