reinforcement learning
reinforcement learning relates to brain function and cognitive performance. Peak Brain Institute explores how QEEG brain mapping and neurofeedback training connect to reinforcement learning through evidence-based approaches. Explore our 2 research papers covering this topic.
Research Papers
A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders
Objective.Brain-computer interfaces (BCIs) are emerging as promising cognitive training tools in neurodevelopmental disorders, as they combine the advantages of traditional computerized interventions with real-time tailored feedback. We propose a gamified BCI based on non-volitional neurofeedback for cognitive training, aiming at reaching a neurorehabilitation tool for application in autism spectrum disorders (ASDs).Approach.The BCI consists of an emotional facial expression paradigm controlled by an intelligent agent that makes correct and wrong actions, while the user observes and judges the agent's actions. The agent learns through reinforcement learning (RL) an optimal strategy if the participant generates error-related potentials (ErrPs) upon incorrect agent actions. We hypothesize that this training approach will allow not only the agent to learn but also the BCI user, by participating through implicit error scrutiny in the process of learning through operant conditioning, making it of particular interest for disorders where error monitoring processes are altered/compromised such as in ASD. In this paper, the main goal is to validate the whole methodological BCI approach and assess whether it is feasible enough to move on to clinical experiments. A control group of ten neurotypical participants and one participant with ASD tested the proposed BCI approach.Main results.We achieved an online balanced-accuracy in ErrPs detection of 81.6% and 77.1%, respectively for two different game modes. Additionally, all participants achieved an optimal RL strategy for the agent at least in one of the test sessions.Significance.The ErrP classification results and the possibility of successfully achieving an optimal learning strategy, show the feasibility of the proposed methodology, which allows to move towards clinical experimentation with ASD participants to assess the effectiveness of the approach as hypothesized.
View Full Paper →Electrophysiological correlates of reinforcement learning in young people with Tourette syndrome with and without co-occurring ADHD symptoms
Altered reinforcement learning is implicated in the causes of Tourette syndrome (TS) and attention-deficit/hyperactivity disorder (ADHD). TS and ADHD frequently co-occur but how this affects reinforcement learning has not been investigated. We examined the ability of young people with TS (n=18), TS+ADHD (N=17), ADHD (n=13) and typically developing controls (n=20) to learn and reverse stimulus-response (S-R) associations based on positive and negative reinforcement feedback. We used a 2 (TS-yes, TS-no)×2 (ADHD-yes, ADHD-no) factorial design to assess the effects of TS, ADHD, and their interaction on behavioural (accuracy, RT) and event-related potential (stimulus-locked P3, feedback-locked P2, feedback-related negativity, FRN) indices of learning and reversing the S-R associations. TS was associated with intact learning and reversal performance and largely typical ERP amplitudes. ADHD was associated with lower accuracy during S-R learning and impaired reversal learning (significantly reduced accuracy and a trend for smaller P3 amplitude). The results indicate that co-occurring ADHD symptoms impair reversal learning in TS+ADHD. The implications of these findings for behavioural tic therapies are discussed.
View Full Paper →Related Topics
Ready to Optimize Your Brain?
Schedule a free consultation to discuss reinforcement learning and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →