recovery
Research Papers
Brain pathways to recovery from alcohol dependence
This article highlights the research presentations at the satellite symposium on "Brain Pathways to Recovery from Alcohol Dependence" held at the 2013 Society for Neuroscience Annual Meeting. The purpose of this symposium was to provide an up to date overview of research efforts focusing on understanding brain mechanisms that contribute to recovery from alcohol dependence. A panel of scientists from the alcohol and addiction research field presented their insights and perspectives on brain mechanisms that may underlie both recovery and lack of recovery from alcohol dependence. The four sessions of the symposium encompassed multilevel studies exploring mechanisms underlying relapse and craving associated with sustained alcohol abstinence, cognitive function deficit and recovery, and translational studies on preventing relapse and promoting recovery. Gaps in our knowledge and research opportunities were also discussed.
View Full Paper →EEG Biofeedback on a Female Stroke Patient with Depression: A Case Study
Background. This single case concerns the treatment of a 71-year-old female stroke patient. The patient's MRI revealed that the location of the stroke was in the right side basal ganglia with damage extending into the anterior limb of the internal capsule. She presented with a virtual paralysis of the left side of her body (hemiplegia with immobilized left arm, contracted fist, minimal motor control over left leg, absence of muscle tonus in left side of face and slurred, monotonic speech). Method. The client was provided with EEG biofeedback training on a one to two half-hour sessions per week schedule. Bipolar montages were used along with single site protocols. This was based largely on the idea of reciprocal communication loops between widely separated cortical generators. It was thought that encouraging communication between cortical sites would have a beneficial impact on impairments related to both functional and structural damage. EEG training protocols included SMR (12-15 Hz) enhancement at C4, C4-Pz and T3-T4 with theta suppression; beta (15-18 Hz) enhancement with theta suppression at C3, C3-Fpz and at C3-Fp1. Results. Patient showed significant improvement in gross motor control and range of movement of left arm and leg. The most dramatic improvement was observed in speech (articulation, strength and tone). While substantial improvements were observed in motor ability, restoration of mood stability proved somewhat more elusive. Since she was receiving additional treatment (physical therapy and medication management), it is impossible to attribute the improvement in functioning solely to the EEG training. However, the consensus among the attending medical personnel was that the improvements noted above took place with unusual expeditiousness. Discussion. When performing EEG biofeedback it may be most practical to adopt an “exercise model” approach in which the regulatory mechanisms in the brain are challenged through the sequential use of multiple protocol configurations. In this case several different training protocols proved useful in her ongoing recovery. While improvements in functioning were a result of a concerted effort involving multiple therapeutic interventions, it is likely that neurofeedback played a vital synergistic role.
View Full Paper →Effects of sham feedback following successful SMR training in an epileptic
After 1 year of SMR biofeedback training of a severe epileptic teenage male, incidence of atonic seizures decreased from 8/hr to less than 1/3 hr. SMR increased from 10% to 70%. Epileptiform discharges decreased from 45% to 15%. Unknown to the patient, his family, or certain members of our research staff, noncontingent feedback was introduced on 7/22/74, ending 9/11/74. A significant decrease occurred for SMR(down 8%), and a significant increase for epileptiform discharges(up 4%). Rate of seizures increased, but was not statistically significant over preceding months of contingent feedback. Incidence of seizures associated with urine loss increased from approximately 6/month to 23/month during noncontingent feedback, a significant increase. Urine-loss results suggest that although seizures did not become more frequent, those the patient did experience were “harder,” i.e., more severe. Contingent feedback was reinstituted following the 7-wk sham, and recovery of all variables to their former levels(prior to sham) occurred.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss recovery and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →