real-time functional magnetic resonance imaging

Research Papers

Neurofeedback Training versus Treatment-as-Usual for Alcohol Dependence: Results of an Early-Phase Randomized Controlled Trial and Neuroimaging Correlates

Subramanian, Leena, Skottnik, Leon, Cox, W. Miles, Lührs, Michael, McNamara, Rachel, Hood, Kerry, Watson, Gareth, Whittaker, Joseph R., Williams, Angharad N., Sakhuja, Raman, Ihssen, Niklas, Goebel, Rainer, Playle, Rebecca, Linden, David E. J. (2021) · European Addiction Research

INTRODUCTION: Alcohol dependence is one of the most common substance use disorders, and novel treatment options are urgently needed. Neurofeedback training (NFT) based on real-time functional magnetic resonance imaging (rtf-MRI) has emerged as an attractive candidate for add-on treatments in psychiatry, but its use in alcohol dependence has not been formally investigated in a clinical trial. We investigated the use of rtfMRI-based NFT to prevent relapse in alcohol dependence. METHODS: Fifty-two alcohol-dependent patients from the UK who had completed a detoxification program were randomly assigned to a treatment group (receiving rtfMRI NFT in addition to standard care) or the control group (receiving standard care only). At baseline, alcohol consumption was assessed as the primary outcome measure and a variety of psychological, behavioral, and neural parameters as secondary outcome measures to determine feasibility and secondary training effects. Participants in the treatment group underwent 6 NFT sessions over 4 months and were trained to downregulate their brain activation in the salience network in the presence of alcohol stimuli and to upregulate frontal activation in response to pictures related to positive goals. Four, 8, and 12 months after baseline assessment, both groups were followed up with a battery of clinical and psychometric tests. RESULTS: Primary outcome measures showed very low relapse rates for both groups. Analysis of neural secondary outcome measures indicated that the majority of patients modulated the salience system in the desired directions, by decreasing activity in response to alcohol stimuli and increasing activation in response to positive goals. The intervention had a good safety and acceptability profile. CONCLUSION: We demonstrated that rtfMRI-neurofeedback targeting hyperactivity of the salience network in response to alcohol cues is feasible in currently abstinent patients with alcohol dependence.

View Full Paper →

Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain

Rana, Mohit, Varan, Andrew Q., Davoudi, Anis, Cohen, Ronald A., Sitaram, Ranganatha, Ebner, Natalie C. (2016) · Frontiers in Aging Neuroscience

Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging.

View Full Paper →

Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing

Rota, Giuseppina, Sitaram, Ranganatha, Veit, Ralf, Erb, Michael, Weiskopf, Nikolaus, Dogil, Grzegorz, Birbaumer, Niels (2009) · Human Brain Mapping

Neurofeedback of functional magnetic resonance imaging (fMRI) can be used to acquire selective control over activation in circumscribed brain areas, potentially inducing behavioral changes, depending on the functional role of the targeted cortical sites. In the present study, we used fMRI-neurofeedback to train subjects to enhance regional activation in the right inferior frontal gyrus (IFG) to influence speech processing and to modulate language-related performance. Seven subjects underwent real-time fMRI-neurofeedback training and succeeded in achieving voluntary regulation of their right Brodmann's area (BA) 45. To examine short-term behavioral impact, two linguistic tasks were carried out immediately before and after the training. A significant improvement of accuracy was observed for the identification of emotional prosodic intonations but not for syntactic processing. This evidence supports a role for the right IFG in the processing of emotional information and evaluation of affective salience. The present study confirms the efficacy of fMRI-biofeedback for noninvasive self-regulation of circumscribed brain activity. Hum Brain Mapp 2009. © 2008 Wiley-Liss, Inc.

View Full Paper →

Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data

Weiskopf, Nikolaus, Veit, Ralf, Erb, Michael, Mathiak, Klaus, Grodd, Wolfgang, Goebel, Rainer, Birbaumer, Niels (2003) · NeuroImage

A brain–computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) is presented which allows human subjects to observe and control changes of their own blood oxygen level-dependent (BOLD) response. This BCI performs data preprocessing (including linear trend removal, 3D motion correction) and statistical analysis on-line. Local BOLD signals are continuously fed back to the subject in the magnetic resonance scanner with a delay of less than 2 s from image acquisition. The mean signal of a region of interest is plotted as a time-series superimposed on color-coded stripes which indicate the task, i.e., to increase or decrease the BOLD signal. We exemplify the presented BCI with one volunteer intending to control the signal of the rostral–ventral and dorsal part of the anterior cingulate cortex (ACC). The subject achieved significant changes of local BOLD responses as revealed by region of interest analysis and statistical parametric maps. The percent signal change increased across fMRI-feedback sessions suggesting a learning effect with training. This methodology of fMRI-feedback can assess voluntary control of circumscribed brain areas. As a further extension, behavioral effects of local self-regulation become accessible as a new field of research.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss real-time functional magnetic resonance imaging and how neurofeedback training can help

* Required fields