Physiological regulation

Research Papers

Regulation of anterior insular cortex activity using real-time fMRI

Caria, Andrea, Veit, Ralf, Sitaram, Ranganatha, Lotze, Martin, Weiskopf, Nikolaus, Grodd, Wolfgang, Birbaumer, Niels (2007) · NeuroImage

Recent advances in functional magnetic resonance imaging (fMRI) data acquisition and processing techniques have made real-time fMRI (rtfMRI) of localized brain areas feasible, reliable and less susceptible to artefacts. Previous studies have shown that healthy subjects learn to control local brain activity with operant training by using rtfMRI-based neurofeedback. In the present study, we investigated whether healthy subjects could voluntarily gain control over right anterior insular activity. Subjects were provided with continuously updated information of the target ROI’s level of activation by visual feedback. All participants were able to successfully regulate BOLD-magnitude in the right anterior insular cortex within three sessions of 4 min each. Training resulted in a significantly increased activation cluster in the anterior portion of the right insula across sessions. An increased activity was also found in the left anterior insula but the percent signal change was lower than in the target ROI. Two different control conditions intended to assess the effects of non-specific feedback and mental imagery demonstrated that the training effect was not due to unspecific activations or non feedback-related cognitive strategies. Both control groups showed no enhanced activation across the sessions, which confirmed our main hypothesis that rtfMRI feedback is area-specific. The increased activity in the right anterior insula during training demonstrates that the effects observed are anatomically specific and self-regulation of right anterior insula only is achievable. This is the first group study investigating the volitional control of emotionally relevant brain region by using rtfMRI training and confirms that self-regulation of local brain activity with rtfMRI is possible.

View Full Paper →

Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data

Weiskopf, Nikolaus, Veit, Ralf, Erb, Michael, Mathiak, Klaus, Grodd, Wolfgang, Goebel, Rainer, Birbaumer, Niels (2003) · NeuroImage

A brain–computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) is presented which allows human subjects to observe and control changes of their own blood oxygen level-dependent (BOLD) response. This BCI performs data preprocessing (including linear trend removal, 3D motion correction) and statistical analysis on-line. Local BOLD signals are continuously fed back to the subject in the magnetic resonance scanner with a delay of less than 2 s from image acquisition. The mean signal of a region of interest is plotted as a time-series superimposed on color-coded stripes which indicate the task, i.e., to increase or decrease the BOLD signal. We exemplify the presented BCI with one volunteer intending to control the signal of the rostral–ventral and dorsal part of the anterior cingulate cortex (ACC). The subject achieved significant changes of local BOLD responses as revealed by region of interest analysis and statistical parametric maps. The percent signal change increased across fMRI-feedback sessions suggesting a learning effect with training. This methodology of fMRI-feedback can assess voluntary control of circumscribed brain areas. As a further extension, behavioral effects of local self-regulation become accessible as a new field of research.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss physiological regulation and how neurofeedback training can help

* Required fields