Pattern Recognition, Visual
Research Papers
A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment
Introduction: This study examines the clinical efficacy of a game-based neurofeedback training (NFT) system to enhance cognitive performance in patients with amnestic mild cognitive impairment (aMCI) and healthy elderly subjects. The NFT system includes five games designed to improve attention span and cognitive performance. The system estimates attention levels by investigating the power spectrum of Beta and Alpha bands. Methods: We recruited 65 women with aMCI and 54 healthy elderly women. All participants were treated with care as usual (CAU); 58 were treated with CAU + NFT (20 sessions of 30 minutes each, 2-3 sessions per week), 36 with CAU + exergame-based training, while 25 patients had only CAU. Cognitive functions were assessed using the Cambridge Neuropsychological Test Automated Battery both before and after treatment. Results: NFT significantly improved rapid visual processing and spatial working memory (SWM), including strategy, when compared with exergame training and no active treatment. aMCI was characterized by impairments in SWM (including strategy), pattern recognition memory, and delayed matching to samples. Conclusion: In conclusion, treatment with NFT improves sustained attention and SWM. Nevertheless, NFT had no significant effect on pattern recognition memory and short-term visual memory, which are the other hallmarks of aMCI. The NFT system used here may selectively improve sustained attention, strategy, and executive functions, but not other cognitive impairments, which characterize aMCI in women.
View Full Paper →Spatial attention modulates visual gamma oscillations across the human ventral stream
Oscillatory synchronization in the gamma frequency range has been proposed as a neuronal mechanism to prioritize processing of relevant stimuli over competing ones. Recent studies in animals found that selective spatial attention enhanced gamma-band synchronization in high-order visual areas (V4) and increased the gamma peak frequency in V1. The existence of such mechanisms in the human visual system is yet to be fully demonstrated. In this study, we used MEG, in combination with an optimised stimulus design, to record visual gamma oscillations from human early visual cortex, while participants performed a visuospatial attention cueing task. First, we reconstructed virtual sensors in V1/V2, where gamma oscillations were strongly induced by visual stimulation alone. Second, following the results of a statistical comparison between conditions of attention, we reconstructed cortical activity also in inferior occipital-temporal regions (V4). The results indicated that gamma amplitude was modulated by spatial attention across the cortical hierarchy, both in the early visual cortex and in higher-order regions of the ventral visual pathway. In contrast, we found no evidence for an increase in the gamma peak frequency in V1/V2 with attention. The gamma response tended to peak earlier in V1/V2 than in V4 by approximately 70 ms, consistent with a feed-forward role of gamma-band activity in propagating sensory representations across the visual cortical hierarchy. Together, these findings suggest that differences in experimental design or methodology can account for the inconsistencies in previous animal and human studies. Furthermore, our results are in line with the hypothesis of enhanced gamma-band synchronization as an attentional mechanism in the human visual cortex.
View Full Paper →Time course of clinical change following neurofeedback
Neurofeedback - learning to modulate brain function through real-time monitoring of current brain state - is both a powerful method to perturb and probe brain function and an exciting potential clinical tool. For neurofeedback effects to be useful clinically, they must persist. Here we examine the time course of symptom change following neurofeedback in two clinical populations, combining data from two ongoing neurofeedback studies. This analysis reveals a shared pattern of symptom change, in which symptoms continue to improve for weeks after neurofeedback. This time course has several implications for future neurofeedback studies. Most neurofeedback studies are not designed to test an intervention with this temporal pattern of response. We recommend that new studies incorporate regular follow-up of subjects for weeks or months after the intervention to ensure that the time point of greatest effect is sampled. Furthermore, this time course of continuing clinical change has implications for crossover designs, which may attribute long-term, ongoing effects of real neurofeedback to the control intervention that follows. Finally, interleaving neurofeedback sessions with assessments and examining when clinical improvement peaks may not be an appropriate approach to determine the optimal number of sessions for an application.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss pattern recognition, visual and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →