non-invasive brain stimulation
Research Papers
Would frontal midline theta indicate cognitive changes induced by non-invasive brain stimulation? A mini review
To the best of our knowledge, neurophysiological markers indicating changes induced by non-invasive brain stimulation (NIBS) on cognitive performance, especially one of the most investigated under these procedures, working memory (WM), are little known. Here, we will briefly introduce frontal midline theta (FM-theta) oscillation (4–8 Hz) as a possible indicator for NIBS effects on WM processing. Electrophysiological recordings of FM-theta oscillation seem to originate in the medial frontal cortex and the anterior cingulate cortex, but they may be driven more subcortically. FM-theta has been acknowledged to occur during memory and emotion processing, and it has been related to WM and sustained attention. It mainly occurs in the frontal region during a delay period, in which specific information previously shown is no longer perceived and must be manipulated to allow a later (delayed) response and observed in posterior regions during information maintenance. Most NIBS studies investigating effects on cognitive performance have used n-back tasks that mix manipulation and maintenance processes. Thus, if considering FM-theta as a potential neurophysiological indicator for NIBS effects on different WM components, adequate cognitive tasks should be considered to better address the complexity of WM processing. Future research should also evaluate the potential use of FM-theta as an index of the therapeutic effects of NIBS intervention on neuropsychiatric disorders, especially those involving the ventral medial prefrontal cortex and cognitive dysfunctions.
View Full Paper →Hemoencephalography self-regulation training and its impact on cognition: A study with schizophrenia and healthy participants
BACKGROUND: Cognitive impairments in schizophrenia are strongly correlated to functional outcome and recovery rates, with no pharmacological agent approved for its treatment. Neurofeedback has emerged as a non-pharmacological approach to enhance neuroplasticity, which consists in inducing voluntary control of brain responses through operant conditioning. METHOD: The effects of hemoencephalography neurofeedback (HEG-NFBK) in 4 brain sites (F7, Fp1, Fp2 and F8) was studied in 8 patients with schizophrenia (SCH, mean age 36.5±9.98) and 12 health controls (mean age 32.17±5.6). We analyzed groups' performance (10 sessions) and cognitive differences in 3 time points (baseline, after training and follow-up) with generalized estimated equations. For SCH we also evaluate the impact on psychopathology. RESULTS: We found a group∗time interaction for HEG-NFBK performance in the left hemisphere sites (F7 an Fp1) and a near-to-significant in the right frontotemporal region (F8), with no group differences and a significant time effect. Most of cognitive domains improved after intervention, including information processing speed, attention processing, working memory, executive functioning, verbal and visual learning. No group∗time interaction was found. Results suggest that both groups benefit from HEG-NFBK training regardless of cognitive differences at baseline. No significant time effects were found for Calgary and PANSS total scale and subscales (positive, negative neither general). CONCLUSION: To our knowledge, this is the first controlled trial showing effects of NFBK on cognitive performance improvement in schizophrenia. Further research investigating the effects of HEG-NFBK training in schizophrenia should be performed.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss non-invasive brain stimulation and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →