Movement

Research Papers

Showing 6 of 9

Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements

Bichsel, Oliver, Stieglitz, Lennart H., Oertel, Markus F., Baumann, Christian R., Gassert, Roger, Imbach, Lukas L. (2021) · Scientific Reports

Parkinsonian motor symptoms are linked to pathologically increased beta-oscillations in the basal ganglia. While pharmacological treatment and deep brain stimulation (DBS) reduce these pathological oscillations concomitantly with improving motor performance, we set out to explore neurofeedback as an endogenous modulatory method. We implemented real-time processing of pathological subthalamic beta oscillations through implanted DBS electrodes to provide deep brain electrical neurofeedback. Patients volitionally controlled ongoing beta-oscillatory activity by visual neurofeedback within minutes of training. During a single one-hour training session, the reduction of beta-oscillatory activity became gradually stronger and we observed improved motor performance. Lastly, endogenous control over deep brain activity was possible even after removing visual neurofeedback, suggesting that neurofeedback-acquired strategies were retained in the short-term. Moreover, we observed motor improvement when the learnt mental strategies were applied 2 days later without neurofeedback. Further training of deep brain neurofeedback might provide therapeutic benefits for Parkinson patients by improving symptom control using strategies optimized through neurofeedback.

View Full Paper →

Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study

He, Shenghong, Everest-Phillips, Claudia, Clouter, Andrew, Brown, Peter, Tan, Huiling (2020) · The Journal of Neuroscience: The Official Journal of the Society for Neuroscience

Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. We conducted a double-blind sham-controlled study on 20 human volunteers (10 females) using a sequential neurofeedback-behavior task with the neurofeedback reflecting the occurrence of β bursts over sensorimotor cortex quantified in real time. The results show that neurofeedback training helps healthy participants learn to volitionally suppress β bursts in the sensorimotor cortex, with training being accompanied by reduced RT in subsequent cued movements. These changes were only significant in the real feedback group but not in the sham group, confirming the effect of neurofeedback training over simple motor imagery. In addition, RTs correlated with the rate and accumulated duration of β bursts in the contralateral motor cortex before the go-cue, but not with averaged β power. The reduced RTs induced by neurofeedback training positively correlated with reduced β bursts across all tested hemispheres. These results strengthen the link between the occurrence of β bursts in the sensorimotor cortex before the go-cue and slowed movement initiation in healthy motor control. The results also highlight the potential benefit of neurofeedback training in facilitating voluntary suppression of β bursts to speed up movement initiation.SIGNIFICANCE STATEMENT This double-blind sham-controlled study suggested that neurofeedback training can facilitate volitional suppression of β bursts in sensorimotor cortex in healthy motor control better than sham feedback. The training was accompanied by reduced reaction time (RT) in subsequent cued movements, and the reduced RT positively correlated with the level of reduction in cortical β bursts before the go-cue, but not with average β power. These results provide further evidence of a causal link between sensorimotor β bursts and movement initiation and suggest that neurofeedback training could potentially be used to train participants to speed up movement initiation.

View Full Paper →

Brain mechanisms for loss of awareness of thought and movement

Walsh, Eamonn, Oakley, David A., Halligan, Peter W., Mehta, Mitul A., Deeley, Quinton (2017) · Social Cognitive and Affective Neuroscience

Loss or reduction of awareness is common in neuropsychiatric disorders and culturally influenced dissociative phenomena but the underlying brain mechanisms are poorly understood. fMRI was combined with suggestions for automatic writing in 18 healthy highly hypnotically suggestible individuals in a within-subjects design to determine whether clinical alterations in awareness of thought and movement can be experimentally modelled and studied independently of illness. Subjective ratings of control, ownership, and awareness of thought and movement, and fMRI data were collected following suggestions for thought insertion and alien control of writing movement, with and without loss of awareness. Subjective ratings confirmed that suggestions were effective. At the neural level, our main findings indicated that loss of awareness for both thought and movement during automatic writing was associated with reduced activation in a predominantly left-sided posterior cortical network including BA 7 (superior parietal lobule and precuneus), and posterior cingulate cortex, involved in self-related processing and awareness of the body in space. Reduced activity in posterior parietal cortices may underlie specific clinical and cultural alterations in awareness of thought and movement. Clinically, these findings may assist development of imaging assessments for loss of awareness of psychological origin, and interventions such as neurofeedback.

View Full Paper →

Bereitschaftspotential augmentation by neuro-feedback training in Parkinson's disease

Fumuro, Tomoyuki, Matsuhashi, Masao, Mitsueda, Takahiro, Inouchi, Morito, Hitomi, Takefumi, Nakagawa, Tomokazu, Matsumoto, Riki, Kawamata, Jun, Inoue, Haruhisa, Mima, Tatsuya, Takahashi, Ryosuke, Ikeda, Akio (2013) · Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology

OBJECTIVE: Decreased early Bereitschaftspotential (BP) is one of the electrophysiological characteristics in patients with Parkinson's disease (PD). We examined whether PD patients could increase BP amplitude by means of neuro-feedback (NFB) training for their slow cortical potentials (SCPs). METHODS: We worked with 10 PD patients and 11 age-matched controls. BP was measured for self-paced button pressing by their right thumb. The subjects were instructed to make the introspective efforts to produce negative SCPs (negativation). The one-day session consisted of three trials, that is, the first BP, NFB training and the second BP, and each patient performed this routine for 2-4 days. Amplitudes of the first and second BPs were compared between the two groups that were divided depending on NFB performance. RESULTS: Good NFB performance had the tendency of larger early BP in the second BP recording than in the first one, whereas in the poor NFB performance the early BP was smaller in the second BP recording than in the first one in both patient and normal groups (p < 0.001). CONCLUSIONS: Good NFB performance of negativation could increase excitatory field potentials of pyramidal cells for the generation of early BP. SIGNIFICANCE: Voluntary regulation of SCPs could enhance BP in PD patients and in aged controls.

View Full Paper →

Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth

Satterthwaite, Theodore D., Wolf, Daniel H., Loughead, James, Ruparel, Kosha, Elliott, Mark A., Hakonarson, Hakon, Gur, Ruben C., Gur, Raquel E. (2012) · NeuroImage

It has recently been reported (Van Dijk et al., 2011) that in-scanner head motion can have a substantial impact on MRI measurements of resting-state functional connectivity. This finding may be of particular relevance for studies of neurodevelopment in youth, confounding analyses to the extent that motion and subject age are related. Furthermore, while Van Dijk et al. demonstrated the effect of motion on seed-based connectivity analyses, it is not known how motion impacts other common measures of connectivity. Here we expand on the findings of Van Dijk et al. by examining the effect of motion on multiple types of resting-state connectivity analyses in a large sample of children and adolescents (n=456). Following replication of the effect of motion on seed-based analyses, we examine the influence of motion on graphical measures of network modularity, dual-regression of independent component analysis, as well as the amplitude and fractional amplitude of low frequency fluctuation. In the entire sample, subject age was highly related to motion. Using a subsample where age and motion were unrelated, we demonstrate that motion has marked effects on connectivity in every analysis examined. While subject age was associated with increased within-network connectivity even when motion was accounted for, controlling for motion substantially attenuated the strength of this relationship. The results demonstrate the pervasive influence of motion on multiple types functional connectivity analysis, and underline the importance of accounting for motion in studies of neurodevelopment.

View Full Paper →

Intermittent "real-time" fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study

Johnson, Kevin A., Hartwell, Karen, LeMatty, Todd, Borckardt, Jeffrey, Morgan, Paul S., Govindarajan, Koushik, Brady, Kathleen, George, Mark S. (2012) · Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging

BACKGROUND: Real-time functional MRI feedback (RTfMRIf) is a developing technique, with unanswered methodological questions. Given a delay of seconds between neural activity and the measurable hemodynamic response, one issue is the optimal method for presentation of neurofeedback to subjects. The primary objective of this preliminary study was to compare the methods of continuous and intermittent presentation of neural feedback on targeted brain activity. METHODS: Thirteen participants performed a motor imagery task and were instructed to increase activation in an individually defined region of left premotor cortex using RTfMRIf. The fMRI signal change was compared between real and false feedback for scans with either continuous or intermittent feedback presentation. RESULTS: More individuals were able to increase their fMRI signal with intermittent feedback, while some individuals had decreased signal with continuous feedback. The evaluation of feedback itself activated an extensive amount of brain regions, and false feedback resulted in brain activation outside of the individually defined region of interest. CONCLUSIONS: As implemented in this study, intermittent presentation of feedback is more effective than continuous presentation in promoting self-modulation of brain activity. Furthermore, it appears that the process of evaluating feedback involves many brain regions that can be isolated using intermittent presentation.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss movement and how neurofeedback training can help

* Required fields