Mental Recall

Research Papers

Showing 6 of 7

Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance

Eschmann, Kathrin C. J., Bader, Regine, Mecklinger, Axel (2020) · NeuroImage

Cognitive and neurofeedback training (NFT) studies have demonstrated that training-induced alterations of frontal-midline (FM) theta activity (4-8 Hz) transfer to cognitive control processes. Given that FM theta oscillations are assumed to provide top-down control for episodic memory retrieval, especially for source retrieval, that is, accurate recollection of contextual details of prior episodes, the present study investigated whether FM theta NFT transfers to memory control processes. It was assessed (1) whether FM theta NFT improves source retrieval and modulates its underlying EEG characteristics and (2) whether this transfer extends over two posttests. Over seven NFT sessions, the training group who trained individual FM theta activity showed greater FM theta increase than an active control group who trained randomly chosen frequency bands. The training group showed better source retrieval in a posttraining session performed 13 days after NFT and their performance increases from pre- to both posttraining sessions were predicted by NFT theta increases. Thus, training-induced enhancement of memory control processes seems to protect newly formed memories from proactive interference of previously learned information. EEG analyses revealed that during pretest both groups showed source memory specific theta activity at frontal and parietal sites. Surprisingly, training-induced improvements in source retrieval tended to be accompanied by less prestimulus FM theta activity, which was predicted by NFT theta change for the training but not the control group, suggesting a more efficient use of memory control processes after training. The present findings provide unique evidence for the enhancement of memory control processes by FM theta NFT.

View Full Paper →

Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review

Young, Kymberly D., Zotev, Vadim, Phillips, Raquel, Misaki, Masaya, Drevets, Wayne C., Bodurka, Jerzy (2018) · Psychiatry and Clinical Neurosciences

Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.

View Full Paper →

Cognitive Behavior Classification From Scalp EEG Signals

Dvorak, Dino, Shang, Andrea, Abdel-Baki, Samah, Suzuki, Wendy, Fenton, Andre A. (2018) · IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society

Electroencephalography (EEG) has become increasingly valuable outside of its traditional use in neurology. EEG is now used for neuropsychiatric diagnosis, neurological evaluation of traumatic brain injury, neurotherapy, gaming, neurofeedback, mindfulness, and cognitive enhancement training. The trend to increase the number of EEG electrodes, the development of novel analytical methods, and the availability of large data sets has created a data analysis challenge to find the "signal of interest" that conveys the most information about ongoing cognitive effort. Accordingly, we compare three common types of neural synchrony measures that are applied to EEG-power analysis, phase locking, and phase-amplitude coupling to assess which analytical measure provides the best separation between EEG signals that were recorded, while healthy subjects performed eight cognitive tasks-Hopkins Verbal Learning Test and its delayed version, Stroop Test, Symbol Digit Modality Test, Controlled Oral Word Association Test, Trail Marking Test, Digit Span Test, and Benton Visual Retention Test. We find that of the three analytical methods, phase-amplitude coupling, specifically theta (4-7 Hz)-high gamma (70-90 Hz) obtained from frontal and parietal EEG electrodes provides both the largest separation between the EEG during cognitive tasks and also the highest classification accuracy between pairs of tasks. We also find that phase-locking analysis provides the most distinct clustering of tasks based on their utilization of long-term memory. Finally, we show that phase-amplitude coupling is the least sensitive to contamination by intense jaw-clenching muscle artifact.

View Full Paper →

An RCT into the effects of neurofeedback on neurocognitive functioning compared to stimulant medication and physical activity in children with ADHD

Geladé, Katleen, Bink, Marleen, Janssen, Tieme W. P., van Mourik, Rosa, Maras, Athanasios, Oosterlaan, Jaap (2017) · European Child & Adolescent Psychiatry

Neurofeedback (NFB) is a potential alternative treatment for children with ADHD that aims to optimize brain activity. Whereas most studies into NFB have investigated behavioral effects, less attention has been paid to the effects on neurocognitive functioning. The present randomized controlled trial (RCT) compared neurocognitive effects of NFB to (1) optimally titrated methylphenidate (MPH) and (2) a semi-active control intervention, physical activity (PA), to control for non-specific effects. Using a multicentre three-way parallel group RCT design, children with ADHD, aged 7-13, were randomly allocated to NFB (n = 39), MPH (n = 36) or PA (n = 37) over a period of 10-12 weeks. NFB comprised theta/beta training at CZ. The PA intervention was matched in frequency and duration to NFB. MPH was titrated using a double-blind placebo controlled procedure to determine the optimal dose. Neurocognitive functioning was assessed using parameters derived from the auditory oddball-, stop-signal- and visual spatial working memory task. Data collection took place between September 2010 and March 2014. Intention-to-treat analyses showed improved attention for MPH compared to NFB and PA, as reflected by decreased response speed during the oddball task [η p2  = 0.21, p < 0.001], as well as improved inhibition, impulsivity and attention, as reflected by faster stop signal reaction times, lower commission and omission error rates during the stop-signal task (range η p2  = 0.09-0.18, p values <0.008). Working memory improved over time, irrespective of received treatment (η p2  = 0.17, p < 0.001). Overall, stimulant medication showed superior effects over NFB to improve neurocognitive functioning. Hence, the findings do not support theta/beta training applied as a stand-alone treatment in children with ADHD.

View Full Paper →

Real-Time Functional Magnetic Resonance Imaging Amygdala Neurofeedback Changes Positive Information Processing in Major Depressive Disorder

Young, Kymberly D., Misaki, Masaya, Harmer, Catherine J., Victor, Teresa, Zotev, Vadim, Phillips, Raquel, Siegle, Greg J., Drevets, Wayne C., Bodurka, Jerzy (2017) · Biological Psychiatry

BACKGROUND: In participants with major depressive disorder who are trained to upregulate their amygdalar hemodynamic responses during positive autobiographical memory recall with real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. This study tested whether amygdalar rtfMRI-nf also changes emotional processing of positive and negative stimuli in a variety of behavioral and imaging tasks. METHODS: Patients with major depressive disorder completed two rtfMRI-nf sessions (18 received amygdalar rtfMRI-nf, 16 received control parietal rtfMRI-nf). One week before and following rtfMRI-nf training, participants performed tasks measuring responses to emotionally valenced stimuli including a backward-masking task, which measures the amygdalar hemodynamic response to emotional faces presented for traditionally subliminal duration and followed by a mask, and the Emotional Test Battery in which reaction times and performance accuracy are measured during tasks involving emotional faces and words. RESULTS: During the backward-masking task, amygdalar responses increased while viewing masked happy faces but decreased to masked sad faces in the experimental versus control group following rtfMRI-nf. During the Emotional Test Battery, reaction times decreased to identification of positive faces and during self-identification with positive words and vigilance scores increased to positive faces and decreased to negative faces during the faces dot-probe task in the experimental versus control group following rtfMRI-nf. CONCLUSIONS: rtfMRI-nf training to increase the amygdalar hemodynamic response to positive memories was associated with changes in amygdalar responses to happy and sad faces and improved processing of positive stimuli during performance of the Emotional Test Battery. These results may suggest that amygdalar rtfMRI-nf training alters responses to emotional stimuli in a manner similar to antidepressant pharmacotherapy.

View Full Paper →

Decoding the Traumatic Memory among Women with PTSD: Implications for Neurocircuitry Models of PTSD and Real-Time fMRI Neurofeedback

Cisler, Josh M., Bush, Keith, James, G. Andrew, Smitherman, Sonet, Kilts, Clinton D. (2015) · PloS One

Posttraumatic Stress Disorder (PTSD) is characterized by intrusive recall of the traumatic memory. While numerous studies have investigated the neural processing mechanisms engaged during trauma memory recall in PTSD, these analyses have only focused on group-level contrasts that reveal little about the predictive validity of the identified brain regions. By contrast, a multivariate pattern analysis (MVPA) approach towards identifying the neural mechanisms engaged during trauma memory recall would entail testing whether a multivariate set of brain regions is reliably predictive of (i.e., discriminates) whether an individual is engaging in trauma or non-trauma memory recall. Here, we use a MVPA approach to test 1) whether trauma memory vs neutral memory recall can be predicted reliably using a multivariate set of brain regions among women with PTSD related to assaultive violence exposure (N=16), 2) the methodological parameters (e.g., spatial smoothing, number of memory recall repetitions, etc.) that optimize classification accuracy and reproducibility of the feature weight spatial maps, and 3) the correspondence between brain regions that discriminate trauma memory recall and the brain regions predicted by neurocircuitry models of PTSD. Cross-validation classification accuracy was significantly above chance for all methodological permutations tested; mean accuracy across participants was 76% for the methodological parameters selected as optimal for both efficiency and accuracy. Classification accuracy was significantly better for a voxel-wise approach relative to voxels within restricted regions-of-interest (ROIs); classification accuracy did not differ when using PTSD-related ROIs compared to randomly generated ROIs. ROI-based analyses suggested the reliable involvement of the left hippocampus in discriminating memory recall across participants and that the contribution of the left amygdala to the decision function was dependent upon PTSD symptom severity. These results have methodological implications for real-time fMRI neurofeedback of the trauma memory in PTSD and conceptual implications for neurocircuitry models of PTSD that attempt to explain core neural processing mechanisms mediating PTSD.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss mental recall and how neurofeedback training can help

* Required fields