Infrared (IR) imaging
Research Papers
Infrared Imaging and Neurofeedback: Initial Reliability and Validity
Introduction. The neurological correlates underlying positive treatment outcomes for neurofeedback have been either unavailable or difficult to demonstrate. Assessment of brain-related changes associated with neurofeedback is needed to further establish its empirical basis. Infrared (IR) imaging is a noninvasive assessment of brain activity with high spatial and temporal resolution. Method. Study 1, a reliability study, assessed the test-retest stability of IR imaging. In Validity Study 2 and 3, IR imaging assessed brain-related changes prior to and following neurofeedback and passive infrared hemoencephalography (pir HEG) training, respectively. Results. In Study 1, high correlations occurred in pre-post comparisons for IR measures unrelated to treatment. Lower correlation between measures of IR imaging indicated changes in brain activation associated with thermoregulation following neurofeedback training. In Study 2, changes in thermal regulation occurred both within and across sessions. The change in metabolic regulation was enduring and associated with a reduction in core Autistic Spectrum Disorder symptomatology and improved cerebral connectivity. In Study 3, a significant percentage of patients with Traumatic Brain Injury increased thermal readings following pir HEG training and the change in thermal readings was associated with EEG connectivity. Conclusion. Findings indicated that IR imaging may be a reliable and valid measure of treatment outcomes with clinical utility and sensitivity.
View Full Paper →Assessment-guided neurofeedback for autistic spectrum disorder
Research reviewing the epidemiology of Autism (Medical Research Council, 2001) indicated that approximately 60 per 10,000 children (1/166) are diagnosed with Autistic Spectrum Disorder (ASD). Jarusiewicz (2002) published the only controlled study documenting the effectiveness of neurofeedback for Autism based on one outcome measure. The present study extended these findings with a larger sample size, broader range of assessments, and physiological measures of brain functioning. Methods. Assessment-guided neurofeedback was conducted in 20 sessions for 37 patients with ASD. The experimental and control groups were matched for age, gender, race, handedness, other treatments, and severity of ASD. Results. Improved ratings of ASD symptoms reflected an 89% success rate. Statistical analyses revealed significant improvement in Autistics who received Neurofeedback compared to a wait list control group. Other major findings included a 40% reduction in core ASD symptomatology (indicated by ATEC Total Scores), and 76% of the experimental group had decreased hyperconnectivity. Reduced cerebral hyperconnectivity was associated with positive clinical outcomes in this population. In all cases of reported improvement in ASD symptomatology, positive treatment outcomes were confirmed by neuropsychological and neurophysiological assessment. Conclusions. Evidence from multiple measures has demonstrated that neurofeedback can be an effective treatment for ASD. In this population, a crucial factor in explaining improved clinical outcomes in the experimental group may be the use of assessment-guided neurofeedback to reduce cerebral hyperconnectivity. Implications of these findings are discussed.
View Full Paper →Passive Infrared Hemoencephalography: Four Years and 100 Migraines
Background. One hundred migraine sufferers were treated using passive Infrared Hemoencephalography (pIR HEG) over a period of four years. All subjects met the criteria for at least one of the categories set forth in the International Headache Society (IHS, 1988) classification criteria for headache disorders for primary migraine. Methods. Subjects were treated using the pIR HEG system in 30-minute sessions. A central forehead placement (approximately Fpz) was used for the sensor assembly for all subjects. Changes in headache patterns were examined. After two years, an infrared video imaging system was added to the data collection process and was available for 61 of the 100 subjects. Infrared forehead images were captured at the start and end of each session to examine changes in prefrontal cortical brain activity. Results. Most of the subjects improved control over their migraine headaches. Over 90% of those subjects who completed at least six sessions reported significant improvements in migraine activity. Conclusions. pIR HEG appears to have a strong impact on migraine headaches, even for people who have not had a positive response to medication. Headache response by the end of six sessions appears to be a good predictor of probability of improvement
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss infrared (ir) imaging and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →