Event-Related Potentials, P300

Research Papers

Differential effects on mood of 12-15 (SMR) and 15-18 (beta1) Hz neurofeedback

Gruzelier, John H. (2014) · International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology

The common assumption in EEG-neurofeedback is one of functional specificity of the trained spectral bands, though it has been posited that only a nonspecific generalised learning process may be engaged. Earlier we reported differential effects on attention in healthy participants measured with continuous performance tests and the P300, following training of the sensory-motor rhythm band (SMR, 12-15 Hz) compared with the adjacent beta1 (15-18 hz) band. Here previously unreported results are presented with phenomenological data from an activation checklist in support of the putative calming effect of SMR neurofeedback. While within sessions both protocols induced tiredness, this was paralleled by an increase in calmness only following SMR training. The differential effect on mood was theoretically consistent and extends evidence of cognitive functional specificity with neurofeedback to affective processes.

View Full Paper →

EEG biofeedback improves attentional bias in high trait anxiety individuals

Wang, Sheng, Zhao, Yan, Chen, Sijuan, Lin, Guiping, Sun, Peng, Wang, Tinghuai (2013) · BMC neuroscience

BACKGROUND: Emotion-related attentional bias is implicated in the aetiology and maintenance of anxiety disorders. Electroencephalogram (EEG) biofeedback can obviously improve the anxiety disorders and reduce stress level, and can also enhance attention performance in healthy subjects. The present study examined the effects and mechanisms of EEG biofeedback training on the attentional bias of high trait anxiety (HTA) individuals toward negative stimuli. RESULTS: Event-related potentials were recorded while HTA (n=24) and nonanxious (n=21) individuals performed the color-word emotional Stroop task. During the emotional Stroop task, HTA participants showed longer reaction times and P300 latencies induced by negative words, compared to nonanxious participants.The EEG biofeedback significantly decreased the trait anxiety inventory score and reaction time in naming the color of negative words in the HTA group. P300 latencies evoked by negative stimuli in the EEG biofeedback group were significantly reduced after the alpha training, while no significant changes were observed in the sham biofeedback group after the intervention. CONCLUSION: The prolonged P300 latency is associated with attentional bias to negative stimuli in the HTA group. EEG biofeedback training demonstrated a significant improvement of negative emotional attentional bias in HTA individuals, which may be due to the normalization of P300 latency.

View Full Paper →

EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials

Egner, T., Gruzelier, J. H. (2004) · Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology

OBJECTIVE: To test a common assumption underlying the clinical use of electroencephalographic (EEG) biofeedback training (neurofeedback), that the modulation of discreet frequency bands is associated with frequency-specific effects. Specifically, the proposal was assessed that enhancement of the low beta components sensorimotor rhythm (SMR: 12-15 Hz) and beta1 (15-18 Hz) affect different aspects of attentional processing. METHODS: Subjects (n=25) were randomly allocated to training with either an SMR or beta1 protocol, or to a non-neurofeedback control group. Subjects were assessed prior and subsequent to the training process on two tests of sustained attention. The neurofeedback participants were also assessed on target P300 event-related potential (ERP) amplitudes in a traditional auditory oddball paradigm. RESULTS: Protocol-specific effects were obtained in that SMR training was associated with increased perceptual sensitivity 'd prime' (d'), and reduced omission errors and reaction time variability. Beta1 training was associated with faster reaction times and increased target P300 amplitudes, whereas no changes were evident in the control group. CONCLUSIONS: Neurofeedback training of SMR and beta1 band components led to significant and protocol-specific effects in healthy subjects. The data can be interpreted as indicating a general attention-enhancing effect of SMR training, and an arousal-enhancing effect of beta1 training.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss event-related potentials, p300 and how neurofeedback training can help

* Required fields