ERPs
Research Papers
In Quest of Pathognomonic/Endophenotypic Markers of Attention Deficit Hyperactivity Disorder (ADHD): Potential of EEG-Based Frequency Analysis and ERPs to Better Detect, Prevent and Manage ADHD
Attention deficit hyperactivity disorder (ADHD) is a chronic heritable developmental delay psychiatric disorder requiring chronic management, characterized by inattention, hyperactivity, hyperkinectivity and impulsivity. Subjective clinical evaluation still remains crucial in its diagnosis. Discussed are two key aspects in the "characterizing ADHD" and on the quest for objective "pathognomonic/endophenotypic diagnostic markers of ADHD". The first aspect briefly revolves around issues related to identification of pathognomonic/endophenotypic diagnostic markers in ADHD. Issues discussed include changes in ADHD definition, remission/persistence and overlapping-symptoms cum shared-heritability with its co-morbid cross-border mental disorders. The second aspect discussed is neurobiological and EEG-based studies on ADHD. Given the neurobiological and temporal aspects of ADHD symptoms the electroencephalograph (EEG) like NeuralScan by Medeia appears as an appropriate tool. The EEGs appropriateness is further enhanced when coupled with suitable behavior/cognitive/motor/psychological tasks/paradigms yielding EEG-based markers like event-related-potential (ERPs like P3 amplitudes and latency), reaction time variability (RTV), Theta:Beta ratio (TBR) and sensorimotor rhythm (SMR). At present, these markers could potentially help in the neurobiological characterization of ADHD and either help in identifying or lay the groundwork for identifying pathognomonic and/or endophenotypic EEG-based markers enabling its diagnosis, treatment and management.
View Full Paper →Neuropsychological rehabilitation for traumatic brain injury patients
The aim of this review is to discuss the basic forms of neuropsychological rehabilitation for patients with traumatic brain injury (TBI). More broadly, we discussed cognitive rehabilitation therapy (CRT) which constitutes a fundamental component in therapeutic interaction at many centres worldwide. Equally presented is a comprehensive model of rehabilitation, the fundamental component of which is CRT. It should be noted that the principles of this approach first arose in Poland in the 1970s, in other words, several decades before their appearance in other programmemes. Taken into consideration are four factors conditioning the effectiveness of such a process: comprehensiveness, earlier interaction, universality and its individualized character. A comprehensive programmeme of rehabilitation covers: cognitive rehabilitation, individual and group rehabilitation with the application of a therapeutic environment, specialist vocational rehabilitation, as well as family psychotherapy. These training programmemes are conducted within the scope of the 'Academy of Life,' which provides support for the patients in their efforts and shows them the means by which they can overcome existing difficulties. Equally emphasized is the close cooperation of the whole team of specialists, as well as the active participation of the family as an essential condition for the effectiveness of rehabilitation and, in effect, a return of the patient to a relatively normal life. Also presented are newly developing neurothechnologies and the neuromarkers of brain injuries. This enables a correct diagnosis to be made and, as a result, the selection of appropriate methods for neuropsychological rehabilitation, including neurotherapy.
View Full Paper →Changes in EEG Spectrograms, Event-Related Potentials and Event-Related Desynchronization Induced by Relative Beta Training in ADHD Children
Background. During the last three decades EEG-based biofeedback (neurofeedback) was used as an alternative treatment for reducing symptoms of ADHD. The goal of this study was to objectively assess the efficacy of biofeedback training by comparing spectrograms, ERPs and ERDs, measured before and after 20 sessions of neurotherapy in a group of ADHD children. Method. Electroencephalogram (EEG), Event related potentials (ERPs) and event related synchronisation/desynchronisation (ERD/ERS) were recorded and computed in auditory GO/NOGO task before and after 15-22 sessions of EEG biofeedback. Eighty-six ADHD children participated in the study. Each session consisted of 30 min of relative beta training. The patients were divided into two groups (good performers and poor performers) depending on their ability to elevate beta activity during sessions. Results. Amplitude of late positive components of evoked potentials in response to NOGOstimuli increased, and event-related synchronisation in alpha frequency band measured at central areas decreased after the whole set of sessions of neurofeedback training in the group of good performers but did not change for the poor performers group. Evoked potential differences between post- and pre-treatment conditions for good performers were distributed over frontal-central areas, reflecting activation of frontal cortical areas associated with beta training. Conclusion. Relative beta training with electrodes located above the frontal areas was associated with an increase of the late positive NOGO component. This activation likely indicates recovery of normal functioning of the executive system
View Full Paper →ERPs correlates of EEG relative beta training in ADHD children
Eighty-six children (ages 9–14) with attention deficit hyperactivity disorder (ADHD) participated in this study. Event-related potentials (ERPs) were recorded in auditory GO/NOGO task before and after 15–22 sessions of EEG biofeedback. Each session consisted of 20 min of enhancing the ratio of the EEG power in 15–18 Hz band to the EEG power in the rest of spectrum, and 7–10 min of enhancing of the ratio of the EEG power in 12–15 Hz to the EEG power in the rest of spectrum with C3-Fz electrodes' placements for the first protocol and C4-Pz for the second protocol. On the basis of quality of performance during training sessions, the patients were divided into two groups: good performers and bad performers. ERPs of good performers to GO and NOGO cues gained positive components evoked within 180–420 ms latency. At the same time, no statistically significant differences between pre- and post-training ERPs were observed for bad performers. The ERP differences between post- and pretreatment conditions for good performers were distributed over frontal–central areas and appear to reflect an activation of frontal cortical areas associated with beta training.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss erps and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →