electrophysiology
Research Papers
Electrophysiological signatures of brain aging in autism spectrum disorder
Recent evidence suggests that structural and functional brain aging is atypical in adults with autism spectrum disorder (ASD). However, it remains unclear if oscillatory slowing, a key marker of neurophysiological aging, follows an atypical trajectory in this population. This study examines patterns of age-related oscillatory slowing in adults with ASD, captured by reductions in the brain's peak alpha frequency (PAF). Resting-state electroencephalography (EEG) data from adults (18-70 years) with ASD (N = 93) and non-ASD controls (N = 87) were pooled from three independent datasets. A robust curve-fitting procedure quantified the peak frequency of alpha oscillations (7-13 Hz) across all brain regions. Associations between PAF and age were assessed and compared between groups. Consistent with characteristic patterns of oscillatory slowing, PAF was negatively associated with age across the entire sample (p < .0001). A significant group-by-age interaction revealed that this relationship was more pronounced in adults with ASD (p < .01). These findings invite further longitudinal investigations of PAF in adults with ASD to confirm if age-related oscillatory slowing is accelerated.
View Full Paper →Parsing heterogeneity in attention-deficit hyperactivity disorder using EEG-based subgroups.
Background: Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous condition for which multiple efforts to characterize brain state differences are underway. The objective of this study was to identify distinct subgroups of resting electroencephalography (EEG) profiles among children with and without ADHD and subsequently provide extensive clinical characterization of the subgroups. Methods: Latent class analysis was used with resting state EEG recorded from a large sample of 781 children with and without ADHD (N = 620 ADHD, N = 161 Control), aged 618 years old. Behavioral and cognitive characteristics of the latent classes were derived from semistructured diagnostic interviews, parent completed behavior rating scales, and cognitive test performance. Results: A five-class solution was the best fit for the data, of which four classes had a defining spectral power elevation. The distribution of ADHD and control subjects was similar across classes suggesting there is no one resting state EEG profile for children with or without ADHD. Specific latent classes demonstrated distinct behavioral and cognitive profiles. Those with elevated slow-wave activity (i.e. delta and theta band) had higher levels of externalizing behaviors and cognitive deficits. Latent subgroups with elevated alpha and beta power had higher levels of internalizing behaviors, emotion dysregulation, and intact cognitive functioning. Conclusions: There is population-level heterogeneity in resting state EEG subgroups, which are associated with distinct behavioral and cognitive profiles. EEG measures may be more useful biomarkers of ADHD outcome or treatment response rather than diagnosis. Keywords: Electrophysiology; ADHD; resting state; latent class analysis.
View Full Paper →Electrophysiological correlates of reinforcement learning in young people with Tourette syndrome with and without co-occurring ADHD symptoms
Altered reinforcement learning is implicated in the causes of Tourette syndrome (TS) and attention-deficit/hyperactivity disorder (ADHD). TS and ADHD frequently co-occur but how this affects reinforcement learning has not been investigated. We examined the ability of young people with TS (n=18), TS+ADHD (N=17), ADHD (n=13) and typically developing controls (n=20) to learn and reverse stimulus-response (S-R) associations based on positive and negative reinforcement feedback. We used a 2 (TS-yes, TS-no)×2 (ADHD-yes, ADHD-no) factorial design to assess the effects of TS, ADHD, and their interaction on behavioural (accuracy, RT) and event-related potential (stimulus-locked P3, feedback-locked P2, feedback-related negativity, FRN) indices of learning and reversing the S-R associations. TS was associated with intact learning and reversal performance and largely typical ERP amplitudes. ADHD was associated with lower accuracy during S-R learning and impaired reversal learning (significantly reduced accuracy and a trend for smaller P3 amplitude). The results indicate that co-occurring ADHD symptoms impair reversal learning in TS+ADHD. The implications of these findings for behavioural tic therapies are discussed.
View Full Paper →An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI
Simultaneous recording of electrophysiology and functional magnetic resonance imaging (fMRI) is a technique of growing importance in neuroscience. Rapidly evolving clinical and scientific requirements have created a need for hardware and software that can be customized for specific applications. Hardware may require customization to enable a variety of recording types (e.g., electroencephalogram, local field potentials, or multi-unit activity) while meeting the stringent and costly requirements of MRI safety and compatibility. Real-time signal processing tools are an enabling technology for studies of learning, attention, sleep, epilepsy, neurofeedback, and neuropharmacology, yet real-time signal processing tools are difficult to develop. We describe an open-source system for simultaneous electrophysiology and fMRI featuring low-noise (<0.6microV p-p input noise), electromagnetic compatibility for MRI (tested up to 7T), and user-programmable real-time signal processing. The hardware distribution provides the complete specifications required to build an MRI-compatible electrophysiological data acquisition system, including circuit schematics, print circuit board (PCB) layouts, Gerber files for PCB fabrication and robotic assembly, a bill of materials with part numbers, data sheets, and vendor information, and test procedures. The software facilitates rapid implementation of real-time signal processing algorithms. This system has been used in human EEG/fMRI studies at 3 and 7T examining the auditory system, visual system, sleep physiology, and anesthesia, as well as in intracranial electrophysiological studies of the non-human primate visual system during 3T fMRI, and in human hyperbaric physiology studies at depths of up to 300 feet below sea level.
View Full Paper →Slow potentials of the cerebral cortex and behavior.
Ready to Optimize Your Brain?
Schedule a free consultation to discuss electrophysiology and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →