correlation

Research Papers

Towards a Coherent View of Brain Connectivity

Collura, Thomas F. (2008) · Journal of Neurotherapy

Background. The electroencephalogram provides a myriad of opportunities to detect and assess brain function and brain connectivity. Method. This article describes the relationship between local and non-local brain activation and synchrony, and discusses the use of appropriate connectivity measures to study and train functional brain connectivity. Specific connectivity measures are described including coherence, phase, synchrony, correlation, and comodulation. The measures are contrasted and compared in terms of their ability to detect particular aspects of connectivity and their usefulness for neurofeedback training. Results. Connectivity metrics for example EEG data are calculated and shown graphically, to illustrate relevant principles. Conclusion. It is possible to assess brain connectivity and integrated function for both assessment and training, through the use of appropriate metrics and display methods.

View Full Paper →

The effects of neurofeedback training on the spectral topography of the electroencephalogram

Egner, Tobias, Zech, T. F., Gruzelier, J. H. (2004) · Clinical Neurophysiology

Objective: To investigate the impact of EEG frequency band biofeedback (neurofeedback) training on spectral EEG topography, which is presumed to mediate cognitive-behavioural training effects. In order to assess the effect of commonly applied neurofeedback protocols on spectral EEG composition, two studies involving healthy participants were carried out. Methods: In Experiment 1, subjects were trained on low beta (12–15 Hz), beta1 (15–18 Hz), and alpha/theta (8–11 Hz/5–8 Hz) protocols, with spectral resting EEG assessed before and after training. The specific associations between learning indices of each individual training protocol and changes in absolute and relative spectral EEG topography was assessed by means of partial correlation analyses. Results of Experiment 1 served to generate hypotheses for Experiment 2, where subjects were randomly allocated to independent groups of low beta, beta1, and alpha/theta training. Spectral resting EEG measures were contrasted prior and subsequent to training within each group. Results: Only few associations between particular protocols and spectral EEG changes were found to be consistent across the two studies, and these did not correspond to expectations based on the operant contingencies trained. Low-beta training was found to be somewhat associated with reduced post-training low-beta activity, while more reliably, alpha/theta training was associated with reduced relative frontal beta band activity. Conclusions: The results document that neurofeedback training of frequency components does affect spectral EEG topography in healthy subjects, but that these effects do not necessarily correspond to either the frequencies or the scalp locations addressed by the training contingencies. The association between alpha/theta training and replicable reductions in frontal beta activity constitutes novel empirical neurophysiological evidence supporting inter alia the training's purported role in reducing agitation and anxiety. Significance: These results underline the complexity of the neural dynamics involved EEG self-regulation and emphasize the need for empirical validation of predictable neurophysiological outcomes of training EEG biofeedback protocols.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss correlation and how neurofeedback training can help

* Required fields