Cognitive science
Research Papers
Reading and controlling human brain activation using real-time functional magnetic resonance imaging
Understanding how to control how the brain's functioning mediates mental experience and the brain's processing to alter cognition or disease are central projects of cognitive and neural science. The advent of real-time functional magnetic resonance imaging (rtfMRI) now makes it possible to observe the biology of one's own brain while thinking, feeling and acting. Recent evidence suggests that people can learn to control brain activation in localized regions, with corresponding changes in their mental operations, by observing information from their brain while inside an MRI scanner. For example, subjects can learn to deliberately control activation in brain regions involved in pain processing with corresponding changes in experienced pain. This may provide a novel, non-invasive means of observing and controlling brain function, potentially altering cognitive processes or disease
View Full Paper →Learning to control brain rhythms: making a brain-computer interface possible
The ability to control electroencephalographic rhythms and to map those changes to the actuation of mechanical devices provides the basis for an assistive brain-computer interface (BCI). In this study, we investigate the ability of subjects to manipulate the sensorimotor mu rhythm (8-12-Hz oscillations recorded over the motor cortex) in the context of a rich visual representation of the feedback signal. Four subjects were trained for approximately 10 h over the course of five weeks to produce similar or differential mu activity over the two hemispheres in order to control left or right movement in a three-dimensional video game. Analysis of the data showed a steep learning curve for producing differential mu activity during the first six training sessions and leveling off during the final four sessions. In contrast, similar mu activity was easily obtained and maintained throughout all the training sessions. The results suggest that an intentional BCI based on a binary signal is possible. During a realistic, interactive, and motivationally engaging task, subjects learned to control levels of mu activity faster when it involves similar activity in both hemispheres. This suggests that while individual control of each hemisphere is possible, it requires more learning time.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss cognitive science and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →