chemobrain

Research Papers

Neural correlates in functional brain mapping among breast cancer survivors receiving different chemotherapy regimens: a qEEG/HEG-based investigation

Vasaghi Gharamaleki, Maryam, Mousavi, Seyedeh Zahra, Owrangi, Maryam, Gholamzadeh, Mohammad Javad, Kamali, Ali-Mohammad, Dehghani, Mehdi, Chakrabarti, Prasun, Nami, Mohammad (2022) · Japanese Journal of Clinical Oncology

BACKGROUND: Post-chemotherapy cognitive impairment commonly known as 'chemobrain' or 'chemofog' is a well-established clinical disorder affecting various cognitive domains including attention, visuospatial working memory, executive function, etc. Although several studies have confirmed the chemobrain in recent years, scant experiments have evaluated the potential neurotoxicity of different chemotherapy regimens and agents. In this study, we aimed to evaluate the extent of attention deficits, one of the commonly affected cognitive domains, among breast cancer patients treated with different chemotherapy regimens through neuroimaging techniques. METHODS: Breast cancer patients treated with two commonly prescribed chemotherapy regimens, Adriamycin, Cyclophosphamide and Taxol and Taxotere, Adriamycin and Cyclophosphamide, and healthy volunteers were recruited. Near-infrared hemoencephalography and quantitative electroencephalography assessments were recorded for each participant at rest and during task performance to compare the functional cortical changes associated with each chemotherapy regimen. RESULTS: Although no differences were observed in hemoencephalography results across groups, the quantitative electroencephalography analysis revealed increased power of high alpha/low beta in left fronto-centro-parietal regions involved in dorsal and ventral attention networks in the Adriamycin, Cyclophosphamide and Taxol-treated group compared with the Taxotere, Adriamycin and Cyclophosphamide and control group. The Adriamycin, Cyclophosphamide and Taxol-treated cases had the highest current source density values in dorsal attention network and ventral attention network and ventral attention network-related centers in 10 and 15 Hz associated with the lowest Z-scored Fast Fourier Transform coherence in the mentioned regions. CONCLUSIONS: The negatively affected neurocognitive profile in breast cancer patients treated with the Adriamycin, Cyclophosphamide and Taxol regimen proposes presumably neurotoxic sequelae of this chemotherapy regimen as compared with the Taxotere, Adriamycin and Cyclophosphamide regimen.

View Full Paper →

The effect of EEG biofeedback on reducing postcancer cognitive impairment

Alvarez, Jean, Meyer, Fremonta L., Granoff, David L., Lundy, Allan (2013) · Integrative Cancer Therapies

BACKGROUND AND HYPOTHESES: Postcancer cognitive impairment (PCCI) is observed in a substantial number of breast cancer survivors, persisting for as long as 20 years in some subgroups. Although compensatory strategies are frequently suggested, no restorative interventions have yet been identified. This study examined the feasibility of EEG biofeedback ("neurofeedback") and its potential effectiveness in reducing PCCI as well as the fatigue, sleep disturbance, and psychological symptoms that frequently accompany PCCI. STUDY DESIGN: This was a 6-month prospective study with a waitlist control period followed by an active intervention. Participants were female breast cancer survivors (n = 23), 6 to 60 months postchemotherapy, with self-reported cognitive impairment. METHODS: Four self-report outcome measures (Functional Assessment of Cancer Therapy-Cognitive Function [FACT-Cog], Functional Assessment of Chronic Illness Therapy-Fatigue [FACIT-Fatigue], Pittsburgh Sleep Quality Index [PSQI], and Brief Symptom Inventory [BSI]-18) were administered 3 times during a 10-week waitlist control period, 3 times during a 10-week (20-session) neurofeedback training regimen, and once at 4 weeks postneurofeedback. RESULTS: All 23 participants completed the study, demonstrating the feasibility of EEG biofeedback in this population. Initially, the sample demonstrated significant dysfunction on all measures compared with general population norms. Repeated-measures ANOVAs revealed strongly significant improvements (P < .001) on all 4 cognitive measures (perceived cognitive impairment, comments from others, perceived cognitive abilities, and impact on quality of life [QOL]), the fatigue scale, and the 4 psychological scales (somatization, depression, anxiety and global severity index) as well as on 3 of 8 sleep scales (quality, daytime dysfunction, and global). Two of the other sleep scales (latency and disturbance) were significant at P < .01, and 1 (use of medication) at P < .05; 2 were not significant. Improvements were generally linear across the course of training, and were maintained at the follow-up testing. At the follow-up testing, the sample no longer differed significantly from normative populations on 3 of the 4 FACT-Cog measures (impairment, impact on QOL, and comments), FACIT-Fatigue, PSQI sleep quality and habitual efficiency, or any of the BSI-18 measures of psychological disturbance. CONCLUSIONS: Data from this limited study suggest that EEG biofeedback has potential for reducing the negative cognitive and emotional sequelae of cancer treatment as well as improving fatigue and sleep patterns.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss chemobrain and how neurofeedback training can help

* Required fields