biomarkers
Research Papers
Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review
Reliable and objective biomarkers promise to improve the assessment and treatment of chronic pain. Resting-state electroencephalography (EEG) is broadly available, easy to use, and cost efficient and, therefore, appealing as a potential biomarker of chronic pain. However, results of EEG studies are heterogeneous. Therefore, we conducted a systematic review (PROSPERO CRD42021272622) of quantitative resting-state EEG and magnetoencephalography (MEG) studies in adult patients with different types of chronic pain. We excluded populations with severe psychiatric or neurologic comorbidity. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semiquantitative data synthesis was conducted using modified albatross plots. We included 76 studies after searching MEDLINE, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and EMBASE. For cross-sectional studies that can serve to develop diagnostic biomarkers, we found higher theta and beta power in patients with chronic pain than in healthy participants. For longitudinal studies, which can yield monitoring and/or predictive biomarkers, we found no clear associations of pain relief with M/EEG measures. Similarly, descriptive studies that can yield diagnostic or monitoring biomarkers showed no clear correlations of pain intensity with M/EEG measures. Risk of bias was high in many studies and domains. Together, this systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of chronic pain. Beyond, this review might help to guide future M/EEG studies on the development of pain biomarkers.
View Full Paper →Trial by trial EEG based BCI for distress versus non distress classification in individuals with ASD
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is often accompanied by impaired emotion regulation (ER). There has been increasing emphasis on developing evidence-based approaches to improve ER in ASD. Electroencephalography (EEG) has shown success in reducing ASD symptoms when used in neurofeedback-based interventions. Also, certain EEG components are associated with ER. Our overarching goal is to develop a technology that will use EEG to monitor real-time changes in ER and perform intervention based on these changes. As a first step, an EEG-based brain computer interface that is based on an Affective Posner task was developed to identify patterns associated with ER on a single trial basis, and EEG data collected from 21 individuals with ASD. Accordingly, our aim in this study is to investigate EEG features that could differentiate between distress and non-distress conditions. Specifically, we investigate if the EEG time-locked to the visual feedback presentation could be used to classify between WIN (non-distress) and LOSE (distress) conditions in a game with deception. Results showed that the extracted EEG features could differentiate between WIN and LOSE conditions (average accuracy of 81%), LOSE and rest-EEG conditions (average accuracy 94.8%), and WIN and rest-EEG conditions (average accuracy 94.9%).
View Full Paper →Peak alpha frequency is a neural marker of cognitive function across the autism spectrum
Cognitive function varies substantially and serves as a key predictor of outcome and response to intervention in autism spectrum disorder (ASD), yet we know little about the neurobiological mechanisms that underlie cognitive function in children with ASD. The dynamics of neuronal oscillations in the alpha range (6-12 Hz) are associated with cognition in typical development. Peak alpha frequency is also highly sensitive to developmental changes in neural networks, which underlie cognitive function, and therefore, it holds promise as a developmentally sensitive neural marker of cognitive function in ASD. Here, we measured peak alpha band frequency under a task-free condition in a heterogeneous sample of children with ASD (N = 59) and age-matched typically developing (TD) children (N = 38). At a group level, peak alpha frequency was decreased in ASD compared to TD children. Moreover, within the ASD group, peak alpha frequency correlated strongly with non-verbal cognition. As peak alpha frequency reflects the integrity of neural networks, our results suggest that deviations in network development may underlie cognitive function in individuals with ASD. By shedding light on the neurobiological correlates of cognitive function in ASD, our findings lay the groundwork for considering peak alpha frequency as a useful biomarker of cognitive function within this population which, in turn, will facilitate investigations of early markers of cognitive impairment and predictors of outcome in high risk infants.
View Full Paper →Computational neuroscience approach to biomarkers and treatments for mental disorders
Psychiatry research has long experienced a stagnation stemming from a lack of understanding of the neurobiological underpinnings of phenomenologically defined mental disorders. Recently, the application of computational neuroscience to psychiatry research has shown great promise in establishing a link between phenomenological and pathophysiological aspects of mental disorders, thereby recasting current nosology in more biologically meaningful dimensions. In this review, we highlight recent investigations into computational neuroscience that have undertaken either theory- or data-driven approaches to quantitatively delineate the mechanisms of mental disorders. The theory-driven approach, including reinforcement learning models, plays an integrative role in this process by enabling correspondence between behavior and disorder-specific alterations at multiple levels of brain organization, ranging from molecules to cells to circuits. Previous studies have explicated a plethora of defining symptoms of mental disorders, including anhedonia, inattention, and poor executive function. The data-driven approach, on the other hand, is an emerging field in computational neuroscience seeking to identify disorder-specific features among high-dimensional big data. Remarkably, various machine-learning techniques have been applied to neuroimaging data, and the extracted disorder-specific features have been used for automatic case-control classification. For many disorders, the reported accuracies have reached 90% or more. However, we note that rigorous tests on independent cohorts are critically required to translate this research into clinical applications. Finally, we discuss the utility of the disorder-specific features found by the data-driven approach to psychiatric therapies, including neurofeedback. Such developments will allow simultaneous diagnosis and treatment of mental disorders using neuroimaging, thereby establishing 'theranostics' for the first time in clinical psychiatry.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss biomarkers and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →