attentional processes
Research Papers
Improvements in Spelling after QEEG-based Neurofeedback in Dyslexia: A Randomized Controlled Treatment Study
Phonological theories of dyslexia assume a specific deficit in representation, storage and recall of phonemes. Various brain imaging techniques, including qEEG, point to the importance of a range of areas, predominantly the left hemispheric temporal areas. This study attempted to reduce reading and spelling deficits in children who are dyslexic by means of neurofeedback training based on neurophysiological differences between the participants and gender and age matched controls. Nineteen children were randomized into an experimental group receiving qEEG based neurofeedback (n = 10) and a control group (n = 9). Both groups also received remedial teaching. The experimental group improved considerably in spelling (Cohen’s d = 3). No improvement was found in reading. An indepth study of the changes in the qEEG power and coherence protocols evidenced no fronto-central changes, which is in line with the absence of reading improvements. A significant increase of alpha coherence was found, which may be an indication that attentional processes account for the improvement in spelling. Consideration of subtypes of dyslexia may refine the results of future studies.
View Full Paper →EEG Spectral-Power and Coherence: LORETA Neurofeedback Training in the Anterior Cingulate Gyrus
Introduction. This study examines the EEG spectral power and coherence changes that occur as a result of LORETA neurofeedback (LNFB) training, which is a recently developed spatial-specific neurofeedback protocol in which it has been demonstrated that human beings can learn to change activity in their own anterior cingulate gyrus. We trained individuals to increase low-beta (14-18 Hz) activity in the cognitive division of the anterior cingulate gyrus (ACcd). Methods. This study was conducted with eight non-clinical students with a mean age of 22. The participants completed over 30 sessions of LNFB training. We utilized the WAIS-III for pre- and post-psychometric measures to assess the influence of this training protocol. Results. We selected training Sessions 5, 10, 15, 20, 25, and 30 for comparison to Session 1. There are significant increases in absolute power and coherence over sessions. There is significant increase in the working memory and processing speed subtest scores. Discussion. The anterior regions of the cortex increase in the low-beta frequency relative to the ACcd at significant levels. The superior prefrontal cortex and occipital regions increase in the higher beta frequencies, but not in the trained frequency. The improvements in the working memory and processing speed scores suggest that LNFB had an overall positive effect in attentional processes, working memory, and processing speed.
View Full Paper →The effect of training distinct neurofeedback protocols on aspects of cognitive performance
The use of neurofeedback as an operant conditioning paradigm has disclosed that participants are able to gain some control over particular aspects of their electroencephalogram (EEG). Based on the association between theta activity (4-7 Hz) and working memory performance, and sensorimotor rhythm (SMR) activity (12-15 Hz) and attentional processing, we investigated the possibility that training healthy individuals to enhance either of these frequencies would specifically influence a particular aspect of cognitive performance, relative to a non-neurofeedback control-group. The results revealed that after eight sessions of neurofeedback the SMR-group were able to selectively enhance their SMR activity, as indexed by increased SMR/theta and SMR/beta ratios. In contrast, those trained to selectively enhance theta activity failed to exhibit any changes in their EEG. Furthermore, the SMR-group exhibited a significant and clear improvement in cued recall performance, using a semantic working memory task, and to a lesser extent showed improved accuracy of focused attentional processing using a 2-sequence continuous performance task. This suggests that normal healthy individuals can learn to increase a specific component of their EEG activity, and that such enhanced activity may facilitate semantic processing in a working memory task and to a lesser extent focused attention. We discuss possible mechanisms that could mediate such effects and indicate a number of directions for future research.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss attentional processes and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →