Home/Research/Brain Training

Brain Training: Neurofeedback

Training protocols, frequency bands, and evidence-based neurofeedback approaches.

📚

Research Library

We've curated 366 research papers for this use case. Dr. Hill and the Peak Brain team are reviewing and summarizing these papers to provide accessible, actionable insights.

Citations and abstracts shown below. Detailed summaries, key findings, and clinical applications will be added as reviews are completed.

Research Citations

← PrevPage 2 of 8Next →
Showing 51-100 of 366 papers

Linking alpha oscillations, attention and inhibitory control in adult ADHD with EEG neurofeedback

Deiber, Marie-Pierre, Hasler, Roland, Colin, Julien, Dayer, Alexandre, Aubry, Jean-Michel, Baggio, Stéphanie, Perroud, Nader, Ros, Tomas (2020) · NeuroImage. Clinical

Abnormal patterns of electrical oscillatory activity have been repeatedly described in adult ADHD. In particular, the alpha rhythm (8-12 Hz), known to be modulated during attention, has previously been considered as candidate biomarker for ADHD. In the present study, we asked adult ADHD patients to self-regulate their own alpha rhythm using neurofeedback (NFB), in order to examine the modulation of alpha oscillations on attentional performance and brain plasticity. Twenty-five adult ADHD patients and 22 healthy controls underwent a 64-channel EEG-recording at resting-state and during a Go/NoGo task, before and after a 30 min-NFB session designed to reduce (desynchronize) the power of the alpha rhythm. Alpha power was compared across conditions and groups, and the effects of NFB were statistically assessed by comparing behavioral and EEG measures pre-to-post NFB. Firstly, we found that relative alpha power was attenuated in our ADHD cohort compared to control subjects at baseline and across experimental conditions, suggesting a signature of cortical hyper-activation. Both groups demonstrated a significant and targeted reduction of alpha power during NFB. Interestingly, we observed a post-NFB increase in resting-state alpha (i.e. rebound) in the ADHD group, which restored alpha power towards levels of the normal population. Importantly, the degree of post-NFB alpha normalization during the Go/NoGo task correlated with individual improvements in motor inhibition (i.e. reduced commission errors) only in the ADHD group. Overall, our findings offer novel supporting evidence implicating alpha oscillations in inhibitory control, as well as their potential role in the homeostatic regulation of cortical excitatory/inhibitory balance.

View Full Paper →

Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback

Zotev, Vadim, Mayeli, Ahmad, Misaki, Masaya, Bodurka, Jerzy (2020) · NeuroImage. Clinical

Simultaneous real-time fMRI and EEG neurofeedback (rtfMRI-EEG-nf) is an emerging neuromodulation approach, that enables simultaneous volitional regulation of both hemodynamic (BOLD fMRI) and electrophysiological (EEG) brain activities. Here we report the first application of rtfMRI-EEG-nf for emotion self-regulation training in patients with major depressive disorder (MDD). In this proof-of-concept study, MDD patients in the experimental group (n = 16) used rtfMRI-EEG-nf during a happy emotion induction task to simultaneously upregulate two fMRI and two EEG activity measures relevant to MDD. The target measures included BOLD activities of the left amygdala (LA) and left rostral anterior cingulate cortex (rACC), and frontal EEG asymmetries in the alpha band (FAA, [7.5-12.5] Hz) and high-beta band (FBA, [21-30] Hz). MDD patients in the control group (n = 8) were provided with sham feedback signals. An advanced procedure for improved real-time EEG-fMRI artifact correction was implemented. The experimental group participants demonstrated significant upregulation of the LA BOLD activity, FAA, and FBA during the rtfMRI-EEG-nf task, as well as significant enhancement in fMRI connectivity between the LA and left rACC. Average individual FAA changes during the rtfMRI-EEG-nf task positively correlated with depression and anhedonia severities, and negatively correlated with after-vs-before changes in depressed mood ratings. Temporal correlations between the FAA and FBA time courses and the LA BOLD activity were significantly enhanced during the rtfMRI-EEG-nf task. The experimental group participants reported significant mood improvements after the training. Our results suggest that the rtfMRI-EEG-nf may have potential for treatment of MDD.

View Full Paper →

Pain Control by Co-adaptive Learning in a Brain-Machine Interface

Zhang, Suyi, Yoshida, Wako, Mano, Hiroaki, Yanagisawa, Takufumi, Mancini, Flavia, Shibata, Kazuhisa, Kawato, Mitsuo, Seymour, Ben (2020) · Current biology: CB

Innovation in the field of brain-machine interfacing offers a new approach to managing human pain. In principle, it should be possible to use brain activity to directly control a therapeutic intervention in an interactive, closed-loop manner. But this raises the question as to whether the brain activity changes as a function of this interaction. Here, we used real-time decoded functional MRI responses from the insula cortex as input into a closed-loop control system aimed at reducing pain and looked for co-adaptive neural and behavioral changes. As subjects engaged in active cognitive strategies orientated toward the control system, such as trying to enhance their brain activity, pain encoding in the insula was paradoxically degraded. From a mechanistic perspective, we found that cognitive engagement was accompanied by activation of the endogenous pain modulation system, manifested by the attentional modulation of pain ratings and enhanced pain responses in pregenual anterior cingulate cortex and periaqueductal gray. Further behavioral evidence of endogenous modulation was confirmed in a second experiment using an EEG-based closed-loop system. Overall, the results show that implementing brain-machine control systems for pain induces a parallel set of co-adaptive changes in the brain, and this can interfere with the brain signals and behavior under control. More generally, this illustrates a fundamental challenge of brain decoding applications-that the brain inherently adapts to being decoded, especially as a result of cognitive processes related to learning and cooperation. Understanding the nature of these co-adaptive processes informs strategies to mitigate or exploit them.

View Full Paper →

Using connectivity-based real-time fMRI neurofeedback to modulate attentional and resting state networks in people with high trait anxiety

Morgenroth, Elenor, Saviola, Francesca, Gilleen, James, Allen, Beth, Lührs, Michael, W Eysenck, Michael, Allen, Paul (2020) · NeuroImage. Clinical

High levels of trait anxiety are associated with impaired attentional control, changes in brain activity during attentional control tasks and altered network resting state functional connectivity (RSFC). Specifically, dorsolateral prefrontal cortex to anterior cingulate cortex (DLPFC - ACC) functional connectivity, thought to be crucial for effective and efficient attentional control, is reduced in high trait anxious individuals. The current study examined the potential of connectivity-based real-time functional magnetic imaging neurofeedback (rt-fMRI-nf) for enhancing DLPFC - ACC functional connectivity in trait anxious individuals. We specifically tested if changes in DLPFC - ACC connectivity were associated with reduced anxiety levels and improved attentional control. Thirty-two high trait anxious participants were assigned to either an experimental group (EG), undergoing veridical rt-fMRI-nf, or a control group (CG) that received sham (yoked) feedback. RSFC (using resting state fMRI), anxiety levels and Stroop task performance were assessed pre- and post-rt-fMRI-nf training. Post-rt-fMRI-nf training, relative to the CG, the EG showed reduced anxiety levels and increased DLPFC-ACC functional connectivity as well as increased RSFC in the posterior default mode network. Moreover, in the EG, changes in DLPFC - ACC functional connectivity during rt-fMRI-nf training were associated with reduced anxiety levels. However, there were no group differences in Stroop task performance. We conclude that rt-fMRI-nf targeting DLPFC - ACC functional connectivity can alter network connectivity and interactions and is a feasible method for reducing trait anxiety.

View Full Paper →

Connectome-wide search for functional connectivity locus associated with pathological rumination as a target for real-time fMRI neurofeedback intervention

Misaki, Masaya, Tsuchiyagaito, Aki, Al Zoubi, Obada, Paulus, Martin, Bodurka, Jerzy (2020) · NeuroImage: Clinical

Real-time fMRI neurofeedback (rtfMRI-nf) enables noninvasive targeted intervention in brain activation with high spatial specificity. To achieve this promise of rtfMRI-nf, we introduced and demonstrated a data-driven framework to design a rtfMRI-nf intervention through the discovery of precise target location associated with clinical symptoms and neurofeedback signal optimization. Specifically, we identified the functional connectivity locus associated with rumination symptoms, utilizing a connectome-wide search in resting-state fMRI data from a large cohort of mood and anxiety disorder individuals (N = 223) and healthy controls (N = 45). Then, we performed a rtfMRI simulation analysis to optimize the online functional connectivity neurofeedback signal for the identified functional connectivity. The connectome-wide search was performed in the medial prefrontal cortex and the posterior cingulate cortex/precuneus brain regions to identify the precise location of the functional connectivity associated with rumination severity as measured by the ruminative response style (RRS) scale. The analysis found that the functional connectivity between the loci in the precuneus (-6, −54, 48 mm in MNI) and the right temporo-parietal junction (RTPJ; 49, −49, 23 mm) was positively correlated with RRS scores (depressive, p < 0.001; brooding, p < 0.001; reflective, p = 0.002) in the mood and anxiety disorder group. We then performed a rtfMRI processing simulation to optimize the online computation of the precuneus-RTPJ connectivity. We determined that the two-point method without a control region was appropriate as a functional connectivity neurofeedback signal with less dependence on signal history and its accommodation of head motion. The present study offers a discovery framework for the precise location of functional connectivity targets for rtfMRI-nf intervention, which could help directly translate neuroimaging findings into clinical rtfMRI-nf interventions.

View Full Paper →

Neural mechanisms of persistent avoidance in OCD: A novel avoidance devaluation study

Chase, Henry W., Graur, Simona, Versace, Amelia, Greenberg, Tsafrir, Bonar, Lisa, Hudak, Robert, Quirk, Gregory J., Greenberg, Ben D., Rasmussen, Steven A., Haber, Suzanne N., Phillips, Mary L. (2020) · NeuroImage. Clinical

Obsessive-Compulsive Disorder (OCD) is characterized by repetitive avoidance behavior which is distressing and associated with marked impairment of everyday life. Recently, paradigms have been designed to explore the hypothesis that avoidance behavior in OCD is consistent with a formal conception of habit. Such studies have involved a devaluation paradigm, in which the value of a previously rewarded cue is altered so that avoidance is no longer necessary. We employed a rule-based avoidance task which included a devaluation, examining behavioral performance on the task and their neural correlates using functional MRI in groups of participants with OCD (n = 44) and healthy control participants (n = 46). Neuroimaging data were analyzed using a general linear model (GLM), modelling valued, devalued and control cues, as well as feedback events. First, while no overall effect of OCD was seen on devaluation performance, patients with longer illness duration showed poorer devaluation performance (χ2 = 13.84, p < 0.001). Reduced devaluation was related to impaired learning on the overtraining phase of the task, and to enhanced feedback activation in the caudate and parietal lobe during within-scanner retraining (T = 5.52, p_FWE = 0.003), across all participants. Second, a significant interaction effect was observed in the premotor cortex (F = 29.03, p_FWE = 0.007) coupled to the devalued cue. Activations were divergent in participants with OCD (lower activation) and healthy controls (higher activation) who did not change responding to the devalued cue following devaluation, and intermediate in participants who did change responding (T = 5.39, p_FWE = 0.003). Finally, consistent with previous work, medial orbitofrontal cortex activation coupled to valued cues was reduced in OCD compared to controls (T = 3.49, p_FWE = 0.009). The findings are discussed in terms of a prediction error-based model of goal-directed and habitual control: specifically, how goal-directed control might be diminished in OCD in favor of habits. They suggest that illness duration might be significant determinant of variation in impaired goal-directed learning in OCD, and be a factor relevant for understanding discrepancies across studies. Overall, the study shows the potential of conceptual replication attempts to provide complementary insights into compulsive behavior and its associated neural circuitry in OCD.

View Full Paper →

Practical considerations for the evaluation and management of Attention Deficit Hyperactivity Disorder (ADHD) in adults

Weibel, S., Menard, O., Ionita, A., Boumendjel, M., Cabelguen, C., Kraemer, C., Micoulaud-Franchi, J.-A., Bioulac, S., Perroud, N., Sauvaget, A., Carton, L., Gachet, M., Lopez, R. (2020) · L'Encephale

Attention deficit with or without hyperactivity disorder (ADHD) is one of the most frequent neuropsychiatric disorders, and affects 2-4% of adults. In contrast with many European countries, the identification and management of adult ADHD remains underdeveloped in France, and a subject of controversy. This review provides a practical update on current knowledge about ADHD in adults for French-speaking professionals who have to detect or manage adult patients with ADHD. ADHD is classified as a neurodevelopmental disorder in the recent update of the international diagnostic classification. While symptoms and impairment due to ADHD are frequently severe during childhood, they often evolve as children grow older, with frequent persistent disabilities in adulthood. In adulthood, the clinical presentation, as in childhood, involves the symptom triad of inattention, hyperactivity and impulsivity. However, differences are noted: hyperactivity is more often internalized, symptoms of inattention may be masked by anxiety symptoms or obsessive-like compensation strategies. ADHD is often diagnosed during childhood, but it is not rare for the diagnosis to be made later. Failure to recognise symptoms resulting in misdiagnosis, or alternatively well-developed compensation factors could be two underlying reasons for the long delay until diagnosis. Other symptoms, such as emotional deregulation or executive function-related symptoms are also usually observed in adults. In addition, in adults, ADHD is often associated with other psychiatric disorders (in 80% of cases); this makes the diagnosis even more difficult. These disorders encompass a broad spectrum, from mood disorders (unipolar or bipolar), to anxiety disorders, and other neurodevelopmental disorders and personality disorders, especially borderline and antisocial personality disorder. Substance-use disorders are very common, either as a consequence of impulsivity and emotional dysregulation or as an attempt at self-treatment. Sleep disorders, especially restless leg syndrome and hypersomnolence, could share common pathophysiological mechanisms with ADHD. ADHD and comorbidity-related symptoms are responsible for serious functional impairment, in various domains, leading to academic, social, vocational, and familial consequences. The impact on other psychiatric disorders as an aggravating factor should also be considered. The considerable disability and the poorer quality of life among adults with ADHD warrant optimal evaluation and management. The diagnostic procedure for ADHD among adults should be systematic. Once the positive diagnosis is made, the evaluation enables characterisation of the levels of severity and impairment at individual level. A full examination should also assess medical conditions associated with ADHD, to provide personalized care. In recent years, a growing number of assessment tools have been translated and validated in French providing a wide range of structured interviews and standardized self-report questionnaires for the evaluation of core and associated ADHD symptoms, comorbidities and functional impairment. The treatment of ADHD in adults is multimodal, and aims to relieve the symptoms, limit the burden of the disease, and manage comorbidities. The most relevant and validated psychological approaches are psycho-education, cognitive-behavioural therapy and "third wave therapies" with a specific focus on emotional regulation. Cognitive remediation and neurofeedback are promising strategies still under evaluation. Medications, especially psychostimulants, are effective for alleviating ADHD symptoms with a large effect size. Their safety and tolerance are satisfactory, although their long-term clinical benefit is still under discussion. In France, methylphenidate is the only stimulant available for the treatment of ADHD. Unfortunately, there is no authorization for its use among adults except in continuation after adolescence. Hence the prescription, which is subject to the regulations on narcotics, is off-label in France. This article aims to provide practical considerations for the management of ADHD and associated disorders in adults, in this particular French context.

View Full Paper →

Train Your Brain? Can We Really Selectively Train Specific EEG Frequencies With Neurofeedback Training

Dessy, Emilie, Mairesse, Olivier, Van Puyvelde, Martine, Cortoos, Aisha, Neyt, Xavier, Pattyn, Nathalie (2020) · Frontiers in Human Neuroscience

Neurofeedback (NFB) is an operant conditioning procedure whereby an individual learns to self-regulate the electrical activity of his/her brain. Initially developed as a treatment intervention for pathologies with underlying EEG dysfunctions, NFB is also used as a training tool to enhance specific cognitive states required in high-performance situations. The original idea behind the NFB training effect is that the changes should only be circumscribed to the trained EEG frequencies. The EEG frequencies which are not used as feedback frequencies should be independent and not affected by the neurofeedback training. Despite the success of sensorimotor rhythm NFB training in cognitive performance enhancement, it remains unclear whether all participants can intentionally modify the power densities of specifically selected electroencephalographic (EEG) frequencies. In the present study, participants were randomly assigned to either a control heart rate variability (HRV) biofeedback (HRV) training group or a combination of HRV biofeedback and neurofeedback (HRV/NFB) training group. This randomized mixed design experiment consisted of two introductory theoretical lessons and a training period of 6 weeks. We investigated the evolution of the different EEG frequency bands of our two experimental groups across and within session. All the participants exhibited EEG changes across and within session. However, within the HRV/NFB training group, untrained EEG frequencies have been significantly modified, unlike some of the trained frequencies. Moreover, EEG activity was modified in both the HRV group and the HRV/NFB groups. Hence, the EEG changes were not only circumscribed to the trained frequency bands or to the training modality.

View Full Paper →

A systematic review of fMRI neurofeedback reporting and effects in clinical populations

Tursic, Anita, Eck, Judith, Lührs, Michael, Linden, David E. J., Goebel, Rainer (2020) · NeuroImage. Clinical

Real-time fMRI-based neurofeedback is a relatively young field with a potential to impact the currently available treatments of various disorders. In order to evaluate the evidence of clinical benefits and investigate how consistently studies report their methods and results, an exhaustive search of fMRI neurofeedback studies in clinical populations was performed. Reporting was evaluated using a limited number of Consensus on the reporting and experimental design of clinical and cognitive-behavioral neurofeedback studies (CRED-NF checklist) items, which was, together with a statistical power and sensitivity calculation, used to also evaluate the existing evidence of the neurofeedback benefits on clinical measures. The 62 found studies investigated regulation abilities and/or clinical benefits in a wide range of disorders, but with small sample sizes and were therefore unable to detect small effects. Most points from the CRED-NF checklist were adequately reported by the majority of the studies, but some improvements are suggested for the reporting of group comparisons and relations between regulation success and clinical benefits. To establish fMRI neurofeedback as a clinical tool, more emphasis should be placed in the future on using larger sample sizes determined through a priori power calculations and standardization of procedures and reporting.

View Full Paper →

Non-Pharmacological Management of Painful Peripheral Neuropathies: A Systematic Review

Liampas, Andreas, Rekatsina, Martina, Vadalouca, Athina, Paladini, Antonella, Varrassi, Giustino, Zis, Panagiotis (2020) · Advances in Therapy

INTRODUCTION: Peripheral neuropathic pain (PNP) is defined as the neuropathic pain that arises either acutely or in the chronic phase of a lesion or disease affecting the peripheral nervous system. PNP is associated with a remarkable disease burden, and there is an increasing demand for new therapies to be used in isolation or combination with currently available treatments. The aim of this systematic review was to evaluate the current evidence, derived from randomized controlled trials (RCTs) that assess non-pharmacological interventions for the treatment of PNP. METHODS: After a systematic Medline search, we identified 18 papers eligible to be included. RESULTS: The currently best available evidence (level II of evidence) exist for painful diabetic peripheral neuropathy. In particular, spinal cord stimulation as adjuvant to conventional medical treatment can be effectively used for the management of patients with refractory pain. Similarly, adjuvant repetitive transcranial magnetic stimulation of the motor cortex is effective in reducing the overall pain intensity, whereas adjuvant static magnetic field therapy can lead to a significant decrease in exercise-induced pain. Weaker evidence (level III of evidence) exists for the use of acupuncture as a monotherapy and neurofeedback, either as an add-on or a monotherapy approach, for treatment of painful chemotherapy-induced peripheral neuropathy CONCLUSIONS: Future RCTs should be conducted to shed more light in the use of non-pharmacological approaches in patients with PNP.

View Full Paper →

Effects of neurofeedback in the management of chronic pain: A systematic review and meta-analysis of clinical trials

Patel, Kajal, Sutherland, Heather, Henshaw, James, Taylor, Jason R., Brown, Christopher A., Casson, Alexander J., Trujillo-Barreton, Nelson J., Jones, Anthony K. P., Sivan, Manoj (2020) · European Journal of Pain (London, England)

BACKGROUND AND OBJECTIVE: Neurofeedback (NFB) provides real-time feedback about neurophysiological signals to patients, thereby encouraging modulation of pain-associated brain activity. This review aims to evaluate the effectiveness and safety of NFB in alleviating pain and pain-associated symptoms in chronic pain patients. METHODS: MEDLINE, PUBMED, Web of Science and PsycINFO databases were searched using the strategy: ("Neurofeedback" OR "EEG Biofeedback" OR "fMRI Biofeedback") AND ("Pain" or "Chronic Pain"). Clinical trials reporting changes in pain following electroencephalogram (EEG) or functional magnetic resonance imaging (fMRI) NFB in chronic pain patients were included. Only Randomized-controlled trials (RCT), non-randomized controlled trials (NRCT) and case series were included. Effect size was pooled for all RCTs in a meta-analysis. RESULTS: Twenty-one studies were included. Reduction in pain following NFB was reported by one high-quality RCT, five of six low-quality RCT or NRCT and 13 of 14 case-series. Pain reduction reported by studies ranged from 6% to 82%, with 10 studies reporting a clinically significant reduction in pain of >30%. The overall effect size was medium (cohen's d -0.76, 95% confidence interval -1.31 to -0.20). Studies were highly heterogeneous (Q [df = 5] = 18.46, p = .002, I2  = 73%). Improvements in depression, anxiety, fatigue and sleep were also seen in some studies. Common side-effects included headache, nausea and drowsiness. These generally did not lead to withdrawal of therapy except in one study. CONCLUSIONS: Neurofeedback is a safe and effective therapy with promising but largely low-quality evidence supporting its use in chronic pain. Further high-quality trials comparing different protocols is warranted to determine the most efficacious way to deliver NFB. SIGNIFICANCE: Neurofeedback is a novel neuromodulatory approach which can be used to reduce the severity of pain and pain-associated symptoms such as sleep disturbances, mood disturbances, fatigue and anxiety in a number of chronic pain conditions. It has a potential to provide integrative non-pharmacological management for chronic pain patients with pain refractory to pharmacological agents with high side-effect profiles. Further high-quality double-blinded randomized sham-controlled trials are needed in order to fully explore the potential of this therapy.

View Full Paper →

Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback

Weiss, Franziska, Zamoscik, Vera, Schmidt, Stephanie N. L., Halli, Patrick, Kirsch, Peter, Gerchen, Martin Fungisai (2020) · NeuroImage

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI NFB) is a promising method for targeted regulation of pathological brain processes in mental disorders. But most NFB approaches so far have used relatively restricted regional activation as a target, which might not address the complexity of the underlying network changes. Aiming towards advancing novel treatment tools for disorders like schizophrenia, we developed a large-scale network functional connectivity-based rtfMRI NFB approach targeting dorsolateral prefrontal cortex and anterior cingulate cortex connectivity with the striatum. In a double-blind randomized yoke-controlled single-session feasibility study with N ​= ​38 healthy controls, we identified strong associations between our connectivity estimates and physiological parameters reflecting the rate and regularity of breathing. These undesired artefacts are especially detrimental in rtfMRI NFB, where the same data serves as an online feedback signal and offline analysis target. To evaluate ways to control for the identified respiratory artefacts, we compared model-based physiological nuisance regression and global signal regression (GSR) and found that GSR was the most effective method in our data. Our results strongly emphasize the need to control for physiological artefacts in connectivity-based rtfMRI NFB approaches and suggest that GSR might be a useful method for online data correction for respiratory artefacts.

View Full Paper →

Randomized, Sham-Controlled Trial of Real-Time Functional Magnetic Resonance Imaging Neurofeedback for Tics in Adolescents With Tourette Syndrome

Sukhodolsky, Denis G., Walsh, Christopher, Koller, William N., Eilbott, Jeffrey, Rance, Mariela, Fulbright, Robert K., Zhao, Zhiying, Bloch, Michael H., King, Robert, Leckman, James F., Scheinost, Dustin, Pittman, Brian, Hampson, Michelle (2020) · Biological Psychiatry

BACKGROUND: Activity in the supplementary motor area (SMA) has been associated with tics in Tourette syndrome (TS). The aim of this study was to test a novel intervention-real-time functional magnetic resonance imaging neurofeedback from the SMA-for reduction of tics in adolescents with TS. METHODS: Twenty-one adolescents with TS were enrolled in a double-blind, randomized, sham-controlled, crossover study involving two sessions of neurofeedback from their SMA. The primary outcome measure of tic severity was the Yale Global Tic Severity Scale administered by an independent evaluator before and after each arm. The secondary outcome was control over the SMA assessed in neuroimaging scans, in which subjects were cued to increase/decrease activity in SMA without receiving feedback. RESULTS: All 21 subjects completed both arms of the study and all assessments. Participants had significantly greater reduction of tics on the Yale Global Tic Severity Scale after real neurofeedback as compared with the sham control (p < .05). Mean Yale Global Tic Severity Scale Total Tic score decreased from 25.2 ± 4.6 at baseline to 19.9 ± 5.7 at end point in the neurofeedback condition and from 24.8 ± 8.1 to 23.3 ± 8.5 in the sham control condition. The 3.8-point difference is clinically meaningful and corresponds to an effect size of 0.59. However, there were no differences in changes on the secondary measure of control over the SMA. CONCLUSIONS: This first randomized controlled trial of real-time functional magnetic resonance imaging neurofeedback in adolescents with TS suggests that this neurofeedback intervention may be helpful for improving tic symptoms. However, no effects were found in terms of change in control over the SMA, the hypothesized mechanism of action.

View Full Paper →

Real-Time Functional Magnetic Resonance Imaging Neurofeedback for the Relief of Distressing Auditory-Verbal Hallucinations: Methodological and Empirical Advances

Humpston, Clara, Garrison, Jane, Orlov, Natasza, Aleman, André, Jardri, Renaud, Fernyhough, Charles, Allen, Paul (2020) · Schizophrenia Bulletin

Auditory-verbal hallucinations (AVH) are often associated with high levels of distress and disability in individuals with schizophrenia-spectrum disorders. In around 30% of individuals with distressing AVH and diagnosed with schizophrenia, traditional antipsychotic drugs have little or no effect. Thus, it is important to develop mechanistic models of AVH to inform new treatments. Recently a small number of studies have begun to explore the use of real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) for the treatment of AVH in individuals with schizophrenia. rtfMRI-NF protocols have been developed to provide feedback about brain activation in real time to enable participants to progressively achieve voluntary control over their brain activity. We offer a conceptual review of the background and general features of neurofeedback procedures before summarizing and evaluating existing mechanistic models of AVH to identify feasible neural targets for the application of rtfMRI-NF as a potential treatment. We consider methodological issues, including the choice of localizers and practicalities in logistics when setting up neurofeedback procedures in a clinical setting. We discuss clinical considerations relating to the use of rtfMRI-NF for AVH in individuals distressed by their experiences and put forward a number of questions and recommendations about best practice. Lastly, we conclude by offering suggestions for new avenues for neurofeedback methodology and mechanistic targets in relation to the research and treatment of AVH.

View Full Paper →

Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients

He, Shenghong, Mostofi, Abteen, Syed, Emilie, Torrecillos, Flavie, Tinkhauser, Gerd, Fischer, Petra, Pogosyan, Alek, Hasegawa, Harutomo, Li, Yuanqing, Ashkan, Keyoumars, Pereira, Erlick, Brown, Peter, Tan, Huiling (2020) · eLife

Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson's disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.

View Full Paper →

Real-time fMRI neurofeedback reduces auditory hallucinations and modulates resting state connectivity of involved brain regions: Part 2: Default mode network -preliminary evidence

Bauer, Clemens C. C., Okano, Kana, Ghosh, Satrajit S., Lee, Yoon Ji, Melero, Helena, Angeles, Carlo de Los, Nestor, Paul G., Del Re, Elisabetta C., Northoff, Georg, Niznikiewicz, Margaret A., Whitfield-Gabrieli, Susan (2020) · Psychiatry Research

Auditory hallucinations (AHs) are one of the most distressing symptoms of schizophrenia (SZ) and are often resistant to medication. Imaging studies of individuals with SZ show hyperactivation of the default mode network (DMN) and the superior temporal gyrus (STG). Studies in SZ show DMN hyperconnectivity and reduced anticorrelation between DMN and the central executive network (CEN). DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations with cognitive impairment. Using real-time fMRI neurofeedback (rt-fMRI-NFB) we trained SZ patients to modulate DMN and CEN networks. Meditation is effective in reducing AHs in SZ and to modulate brain network integration and increase DMN anticorrelations. Consequently, patients were provided with meditation strategies to enhance their abilities to modulate DMN/CEN. Results show a reduction of DMN hyperconnectivity and increase in DMNCEN anticorrelation. Furthermore, the change in individual DMN connectivity significantly correlated with reductions in AHs. This is the first time that meditation enhanced through rt-fMRI-NFB is used to reduce AHs in SZ. Moreover, it provides the first empirical evidence for a direct causal relation between meditation enhanced rt-fMRI-NFB modulation of DMNCEN activity and post-intervention modulation of resting state networks ensuing in reductions in frequency and severity of AHs.

View Full Paper →

Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance

Eschmann, Kathrin C. J., Bader, Regine, Mecklinger, Axel (2020) · NeuroImage

Cognitive and neurofeedback training (NFT) studies have demonstrated that training-induced alterations of frontal-midline (FM) theta activity (4-8 Hz) transfer to cognitive control processes. Given that FM theta oscillations are assumed to provide top-down control for episodic memory retrieval, especially for source retrieval, that is, accurate recollection of contextual details of prior episodes, the present study investigated whether FM theta NFT transfers to memory control processes. It was assessed (1) whether FM theta NFT improves source retrieval and modulates its underlying EEG characteristics and (2) whether this transfer extends over two posttests. Over seven NFT sessions, the training group who trained individual FM theta activity showed greater FM theta increase than an active control group who trained randomly chosen frequency bands. The training group showed better source retrieval in a posttraining session performed 13 days after NFT and their performance increases from pre- to both posttraining sessions were predicted by NFT theta increases. Thus, training-induced enhancement of memory control processes seems to protect newly formed memories from proactive interference of previously learned information. EEG analyses revealed that during pretest both groups showed source memory specific theta activity at frontal and parietal sites. Surprisingly, training-induced improvements in source retrieval tended to be accompanied by less prestimulus FM theta activity, which was predicted by NFT theta change for the training but not the control group, suggesting a more efficient use of memory control processes after training. The present findings provide unique evidence for the enhancement of memory control processes by FM theta NFT.

View Full Paper →

Modulatory effects of dynamic fMRI-based neurofeedback on emotion regulation networks in adolescent females

Zich, Catharina, Johnstone, Nicola, Lührs, Michael, Lisk, Stephen, Haller, Simone Pw, Lipp, Annalisa, Lau, Jennifer Yf, Kadosh, Kathrin Cohen (2020) · NeuroImage

Research has shown that difficulties with emotion regulation abilities in childhood and adolescence increase the risk for developing symptoms of mental disorders, e.g anxiety. We investigated whether functional magnetic resonance imaging (fMRI)-based neurofeedback (NF) can modulate brain networks supporting emotion regulation abilities in adolescent females. We performed three experiments (Experiment 1: N ​= ​18; Experiment 2: N ​= ​30; Experiment 3: N ​= ​20). We first compared different NF implementations regarding their effectiveness of modulating prefrontal cortex (PFC)-amygdala functional connectivity (fc). Further we assessed the effects of fc-NF on neural measures, emotional/metacognitive measures and their associations. Finally, we probed the mechanism underlying fc-NF by examining concentrations of inhibitory and excitatory neurotransmitters. Results showed that NF implementations differentially modulate PFC-amygdala fc. Using the most effective NF implementation we observed important relationships between neural and emotional/metacognitive measures, such as practice-related change in fc was related with change in thought control ability. Further, we found that the relationship between state anxiety prior to the MRI session and the effect of fc-NF was moderated by GABA concentrations in the PFC and anterior cingulate cortex. To conclude, we were able to show that fc-NF can be used in adolescent females to shape neural and emotional/metacognitive measures underlying emotion regulation. We further show that neurotransmitter concentrations moderate fc-NF-effects.

View Full Paper →

Neurofeedback Training for Social Cognitive Deficits: A Systematic Review

Kumari, Manju, Sharma, Ankita (2020) · International Journal of Online and Biomedical Engineering (iJOE)

<p><strong>Orndorff and his colleagues [1]</strong> suggested that if a neural activity is considered a treatment variable instead of outcome, it widens the scope of research and has a specific implication for social neuroscience. Given this, the empirical evidence is collected and analyzed where neural activity as self-manipulation design through neurofeedback training specifically for social cognition deficit is done. The objective of the present article is to provide a systematic review of 1) how NFT is utilized to treat social cognitive deficits, 2) how NFT is utilized to target Social Cognition Deficit in ASD, 3) examining the directions, strengths, and quality of evidence to support the use of NFT for ASD. The databases for studies were searched in PubMed, MEDLINE, EMBASE, Springer, Science Direct, Psychinfo, and Google Scholar, using combinations of the following keywords: ‘Neurofeedback,’ ‘Autism Spectrum Disorder,’ ‘Mu Rhythm’ and ‘Social Cognition.’ Studies were eligible for inclusion if they were specific to 1) autistic and typically developed population, 2) intervention study, 3) Delivered by NFT, 4) participants showed social cognitive deficit and/or improvement. Total one eighty-seven studies were found of key interest; out of which 17 studies were eligible for inclusion in this review. All studies reported the improvement in different domains of social cognition and were moderately methodologically sound. Eleven out of seventeen studies satisfied the trainability and interpretability criteria suggested by <strong>Zoefel and his colleagues [2].</strong> The conclusion from the present review is in line with comments of <strong>Marzbani and colleagues [3]</strong> that, ‘current research does not provide sufficient conclusive results about its efficacy.’ The patterns and directions concluded from studies related to protocol, methodology and results are discussed in detail in the present review.</p>

View Full Paper →

Neurofeedback-Linked Suppression of Cortical β Bursts Speeds Up Movement Initiation in Healthy Motor Control: A Double-Blind Sham-Controlled Study

He, Shenghong, Everest-Phillips, Claudia, Clouter, Andrew, Brown, Peter, Tan, Huiling (2020) · The Journal of Neuroscience: The Official Journal of the Society for Neuroscience

Abnormally increased β bursts in cortical-basal ganglia-thalamic circuits are associated with rigidity and bradykinesia in patients with Parkinson's disease. Increased β bursts detected in the motor cortex have also been associated with longer reaction times (RTs) in healthy participants. Here we further hypothesize that suppressing β bursts through neurofeedback training can improve motor performance in healthy subjects. We conducted a double-blind sham-controlled study on 20 human volunteers (10 females) using a sequential neurofeedback-behavior task with the neurofeedback reflecting the occurrence of β bursts over sensorimotor cortex quantified in real time. The results show that neurofeedback training helps healthy participants learn to volitionally suppress β bursts in the sensorimotor cortex, with training being accompanied by reduced RT in subsequent cued movements. These changes were only significant in the real feedback group but not in the sham group, confirming the effect of neurofeedback training over simple motor imagery. In addition, RTs correlated with the rate and accumulated duration of β bursts in the contralateral motor cortex before the go-cue, but not with averaged β power. The reduced RTs induced by neurofeedback training positively correlated with reduced β bursts across all tested hemispheres. These results strengthen the link between the occurrence of β bursts in the sensorimotor cortex before the go-cue and slowed movement initiation in healthy motor control. The results also highlight the potential benefit of neurofeedback training in facilitating voluntary suppression of β bursts to speed up movement initiation.SIGNIFICANCE STATEMENT This double-blind sham-controlled study suggested that neurofeedback training can facilitate volitional suppression of β bursts in sensorimotor cortex in healthy motor control better than sham feedback. The training was accompanied by reduced reaction time (RT) in subsequent cued movements, and the reduced RT positively correlated with the level of reduction in cortical β bursts before the go-cue, but not with average β power. These results provide further evidence of a causal link between sensorimotor β bursts and movement initiation and suggest that neurofeedback training could potentially be used to train participants to speed up movement initiation.

View Full Paper →

An Integrative Model for the Effectiveness of Biofeedback Interventions for Anxiety Regulation: Viewpoint

Weerdmeester, Joanneke, van Rooij, Marieke Mjw, Engels, Rutger Cme, Granic, Isabela (2020) · Journal of Medical Internet Research

Biofeedback has shown to be a promising tool for the treatment of anxiety; however, several theoretical as well as practical limitations have prevented widespread adaptation until now. With current technological advances and the increasing interest in the use of self-monitoring technology to improve mental health, we argue that this is an ideal time to launch a new wave of biofeedback training. In this viewpoint paper, we reflect on the current state of biofeedback training, including the more traditional techniques and mechanisms that have been thought to explain the effectiveness of biofeedback such as the integration of operant learning and meditation techniques, and the changes in interoceptive awareness and physiology. Subsequently, we propose an integrative model that includes a set of cognitive appraisals as potential determinants of adaptive trajectories within biofeedback training such as growth mindset, self-efficacy, locus of control, and threat-challenge appraisals. Finally, we present a set of detailed guidelines based on the integration of our model with the mechanics and mechanisms offered by emerging interactive technology to encourage a new phase of research and implementation using biofeedback. There is a great deal of promise for future biofeedback interventions that harness the power of wearables and video games, and that adopt a user-centered approach to help people regulate their anxiety in a way that feels engaging, personal, and meaningful.

View Full Paper →

The NeMo real-time fMRI neurofeedback study: protocol of a randomised controlled clinical intervention trial in the neural foundations of mother-infant bonding

Eckstein, Monika, Zietlow, Anna-Lena, Gerchen, Martin Fungisai, Schmitgen, Mike Michael, Ashcroft-Jones, Sarah, Kirsch, Peter, Ditzen, Beate (2019) · BMJ open

INTRODUCTION: Most mothers feel an immediate, strong emotional bond with their newborn. On a neurobiological level, this is accompanied with the activation of the brain reward systems, including the striatum. However, approximately 10% of all mothers report difficulties to bond emotionally with their infant and display impaired reward responses to the interaction with their infant which might have long-term negative effects for the child's development. As previous studies suggest that activation of the striatal reward system can be regulated through functional MRI (fMRI)-based neurofeedback (NFB), we have designed and investigate fMRI-NFB training to treat maternal bonding difficulties. METHODS AND ANALYSIS: In the planned trial, mothers will be presented pictures of their infant and real-time fMRI (rtfMRI), peripheral measures, neural, endocrine, psychophysiological and behavioural measures will be assessed. Mothers with bonding difficulties (n=68) will be randomised to one of two double-blind intervention groups at 4-6 months postpartum. They will participate in three repeated NFB training sessions with rtfMRI-NFB training to increase activation of (a) the ventral striatum or (b) the anterior cingulate. Interview data and real-time mother-infant interaction behaviour pre-intervention, post-intervention and at follow-up will serve as clinical outcome measures. ETHICS AND DISSEMINATION: Study procedures are in line with the recommendations of the World Medical Association (revised Declaration of Helsinki) and were approved by the Ethics Committee of the Medical Faculty, s-450/2017, Heidelberg University. All participants will provide written informed consent after receiving a detailed oral and written explanation of all procedures and can withdraw their consent at any time without negative consequence. Results will be internationally published and disseminated, to further the discussion on non-pharmacological treatment options in complex mental disorders. TRIAL REGISTRATION NUMBER: DRKS00014570; Pre-results.

View Full Paper →

Functional connectivity changes associated with fMRI neurofeedback of right inferior frontal cortex in adolescents with ADHD

Rubia, K., Criaud, M., Wulff, M., Alegria, A., Brinson, H., Barker, G., Stahl, D., Giampietro, V. (2019) · NeuroImage

Attention Deficit Hyperactivity Disorder (ADHD) is associated with poor self-control, underpinned by inferior fronto-striatal deficits. We showed previously that 18 ADHD adolescents over 11 runs of 8.5 min of real-time functional magnetic resonance neurofeedback of the right inferior frontal cortex (rIFC) progressively increased activation in 2 regions of the rIFC which was associated with clinical symptom improvement. In this study, we used functional connectivity analyses to investigate whether fMRI-Neurofeedback of rIFC resulted in dynamic functional connectivity changes in underlying neural networks. Whole-brain seed-based functional connectivity analyses were conducted using the two clusters showing progressively increased activation in rIFC as seed regions to test for changes in functional connectivity before and after 11 fMRI-Neurofeedback runs. Furthermore, we tested whether the resulting functional connectivity changes were associated with clinical symptom improvements and whether they were specific to fMRI-Neurofeedback of rIFC when compared to a control group who had to self-regulate another region. rIFC showed increased positive functional connectivity after relative to before fMRI-Neurofeedback with dorsal caudate and anterior cingulate and increased negative functional connectivity with regions of the default mode network (DMN) such as posterior cingulate and precuneus. Furthermore, the functional connectivity changes were correlated with clinical improvements and the functional connectivity and correlation findings were specific to the rIFC-Neurofeedback group. The findings show for the first time that fMRI-Neurofeedback of a typically dysfunctional frontal region in ADHD adolescents leads to strengthening within fronto-cingulo-striatal networks and to weakening of functional connectivity with posterior DMN regions and that this may be underlying clinical improvement.

View Full Paper →

Neurofeedback Treatment of Negative Symptoms in Schizophrenia: Two Case Reports

Pazooki, Khashayar, Leibetseder, Max, Renner, Walter, Gougleris, Gabriel, Kapsali, Efsevia (2019) · Applied Psychophysiology and Biofeedback

Negative symptoms of schizophrenia, like diminished emotional expression and a dearth of self-initiated behavior do not respond reliably to anti-psychotic medication or to conventional psychotherapeutic approaches. Starting from evidence on the probable neural basis of such symptoms and on the effectiveness of neurofeedback with other psychological disorders, the present case study applied 20 sessions of EEG neurofeedback to a 45-year-old female and a 30-year-old male, both diagnosed with severe negative symptoms of schizophrenia. In both cases GAF scores were improved significantly and at the end of treatment, both patients did not meet the diagnostic criteria of negative symptomatology any longer. Symptom reduction went along with an obvious improvement of social, interpersonal, and cognitive abilities according to the clinical impression. Detailed data analysis revealed that these improvements went along with corresponding changes of EEG parameters and with distinct patterns and strategies of change in each of the two individuals. The results suggest that EEG neurofeedback should be examined on a larger scale as it offers a promising alternative to existing treatment approaches for negative symptoms in schizophrenia.

View Full Paper →

Real-Time Functional Connectivity-Informed Neurofeedback of Amygdala-Frontal Pathways Reduces Anxiety

Zhao, Zhiying, Yao, Shuxia, Li, Keshuang, Sindermann, Cornelia, Zhou, Feng, Zhao, Weihua, Li, Jianfu, Lührs, Michael, Goebel, Rainer, Kendrick, Keith M., Becker, Benjamin (2019) · Psychotherapy and Psychosomatics

BACKGROUND: Deficient emotion regulation and exaggerated anxiety represent a major transdiagnostic psychopathological marker. On the neural level these deficits have been closely linked to impaired, yet treatment-sensitive, prefrontal regulatory control over the amygdala. Gaining direct control over these pathways could therefore provide an innovative and promising intervention to regulate exaggerated anxiety. To this end the current proof-of-concept study evaluated the feasibility, functional relevance and maintenance of a novel connectivity-informed real-time fMRI neurofeedback training. METHODS: In a randomized crossover sham-controlled design, 26 healthy subjects with high anxiety underwent real-time fMRI-guided neurofeedback training to enhance connectivity between the ventrolateral prefrontal cortex (vlPFC) and the amygdala (target pathway) during threat exposure. Maintenance of regulatory control was assessed after 3 days and in the absence of feedback. Training-induced changes in functional connectivity of the target pathway and anxiety ratings served as primary outcomes. RESULTS: Training of the target, yet not the sham control, pathway significantly increased amygdala-vlPFC connectivity and decreased levels of anxiety. Stronger connectivity increases were significantly associated with higher anxiety reduction on the group level. At the follow-up, volitional control over the target pathway was maintained in the absence of feedback. CONCLUSIONS: The present results demonstrate for the first time that successful self-regulation of amygdala-prefrontal top-down regulatory circuits may represent a novel intervention to control anxiety. As such, the present findings underscore both the critical contribution of amygdala-prefrontal circuits to emotion regulation and the therapeutic potential of connectivity-informed real-time neurofeedback.

View Full Paper →

The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback

Mehler, David M. A., Williams, Angharad N., Krause, Florian, Lührs, Michael, Wise, Richard G., Turner, Duncan L., Linden, David E. J., Whittaker, Joseph R. (2019) · NeuroImage

There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.

View Full Paper →

Clinical and Experimental Factors Influencing the Efficacy of Neurofeedback in ADHD: A Meta-Analysis

Bussalb, Aurore, Congedo, Marco, Barthélemy, Quentin, Ojeda, David, Acquaviva, Eric, Delorme, Richard, Mayaud, Louis (2019) · Frontiers in Psychiatry

Meta-analyses have been extensively used to evaluate the efficacy of neurofeedback (NFB) treatment for Attention Deficit/Hyperactivity Disorder (ADHD) in children and adolescents. However, each meta-analysis published in the past decade has contradicted the methods and results from the previous one, thus making it difficult to determine a consensus of opinion on the effectiveness of NFB. This works brings continuity to the field by extending and discussing the last and much controversial meta-analysis by Cortese et al. (1). The extension comprises an update of that work including the latest control trials, which have since been published and, most importantly, offers a novel methodology. Specifically, NFB literature is characterized by a high technical and methodological heterogeneity, which partly explains the current lack of consensus on the efficacy of NFB. This work takes advantage of this by performing a Systematic Analysis of Biases (SAOB) in studies included in the previous meta-analysis. Our extended meta-analysis (k = 16 studies) confirmed the previously obtained results of effect sizes in favor of NFB efficacy as being significant when clinical scales of ADHD are rated by parents (non-blind, p-value = 0.0014), but not when they are rated by teachers (probably blind, p-value = 0.27). The effect size is significant according to both raters for the subset of studies meeting the definition of “standard NFB protocols” (parents' pvalue = 0.0054; teachers' p-value = 0.043, k = 4). Following this, the SAOB performed on k = 33 trials identified three main factors that have an impact on NFB efficacy: first, a more intensive treatment, but not treatment duration, is associated with higher efficacy; second, teachers report a lower improvement compared to parents; third, using high-quality EEG equipment improves the effectiveness of the NFB treatment. The identification of biases relating to an appropriate technical implementation of NFB certainly supports the efficacy of NFB as an intervention. The data presented also suggest that the probably blind assessment of teachers may not be considered a good proxy for blind assessments, therefore stressing the need for studies with placebo-controlled intervention as well as carefully reported neuromarker changes in relation to clinical response

View Full Paper →

Volitional limbic neuromodulation exerts a beneficial clinical effect on Fibromyalgia

Goldway, Noam, Ablin, Jacob, Lubin, Omer, Zamir, Yoav, Keynan, Jackob Nimrod, Or-Borichev, Ayelet, Cavazza, Marc, Charles, Fred, Intrator, Nathan, Brill, Silviu, Ben-Simon, Eti, Sharon, Haggai, Hendler, Talma (2019) · NeuroImage

Volitional neural modulation using neurofeedback has been indicated as a potential treatment for chronic conditions that involve peripheral and central neural dysregulation. Here we utilized neurofeedback in patients suffering from Fibromyalgia - a chronic pain syndrome that involves sleep disturbance and emotion dysregulation. These ancillary symptoms, which have an amplificating effect on pain, are known to be mediated by heightened limbic activity. In order to reliably probe limbic activity in a scalable manner fit for EEG-neurofeedback training, we utilized an Electrical Finger Print (EFP) model of amygdala-BOLD signal (termed Amyg-EFP), that has been successfully validated in our lab in the context of volitional neuromodulation. We anticipated that Amyg-EFP-neurofeedback training aimed at limbic down modulation would improve chronic pain in patients suffering from Fibromyalgia, by reducing sleep disorder improving emotion regulation. We further expected that improved clinical status would correspond with successful training as indicated by improved down modulation of the Amygdala-EFP signal. Thirty-Four Fibromyalgia patients (31F; age 35.6 ± 11.82) participated in a randomized placebo-controlled trial with biweekly Amyg-EFP-neurofeedback sessions or sham neurofeedback (n = 9) for a total duration of five consecutive weeks. Following training, participants in the real-neurofeedback group were divided into good (n = 13) or poor (n = 12) modulators according to their success in the neurofeedback training. Before and after treatment, self-reports on pain, depression, anxiety, fatigue and sleep quality were obtained, as well as objective sleep indices. Long-term clinical follow-up was made available, within up to three years of the neurofeedback training completion. REM latency and objective sleep quality index were robustly improved following the treatment course only in the real-neurofeedback group (time × group p < 0.05) and to a greater extent among good modulators (time × sub-group p < 0.05). In contrast, self-report measures did not reveal a treatment-specific response at the end of the neurofeedback training. However, the follow-up assessment revealed a delayed improvement in chronic pain and subjective sleep experience, evident only in the real-neurofeedback group (time × group p < 0.05). Moderation analysis showed that the enduring clinical effects on pain evident in the follow-up assessment were predicted by the immediate improvements following training in objective sleep and subjective affect measures. Our findings suggest that Amyg-EFP-neurofeedback that specifically targets limbic activity down modulation offers a successful principled approach for volitional EEG based neuromodulation treatment in Fibromyalgia patients. Importantly, it seems that via its immediate sleep improving effect, the neurofeedback training induced a delayed reduction in the target subjective symptom of chronic pain, far and beyond the immediate placebo effect. This indirect approach to chronic pain management reflects the substantial link between somatic and affective dysregulation that can be successfully targeted using neurofeedback.

View Full Paper →

The efficacy of biofeedback approaches for obsessive-compulsive and related disorders: A systematic review and meta-analysis

Ferreira, Sónia, Pêgo, José Miguel, Morgado, Pedro (2019) · Psychiatry Research

Biofeedback is applied to target excessive and/or deficient physiological signals to help patients identifying and self-managing their symptoms. Biofeedback has been employed in psychiatric disorders, including obsessive-compulsive disorder (OCD), mainly by using neural signals - neurofeedback. Recently, OCD has been integrated into the obsessive-compulsive and related disorders (OCD&RD) category (body dysmorphic, hoarding, trichotillomania/hair-pulling, and excoriation/skin-picking disorders). The efficacy of biofeedback for OCD&RD is still unknown. Our work provides a complete overview of publications assessing the therapeutic efficacy of biofeedback in OCD&RD with a systematic review and meta-analysis. We found ten studies involving 102 OCD participants (three randomized controlled trials) mostly applying neurofeedback (one publication used thermal biofeedback). Five neurofeedback studies were selected for meta-analysis (89 patients; two randomized controlled trials). The overall effect size within the treatment group varied between medium to large, but high heterogeneity and inconsistency values were found. The methodological quality was low indicating a high risk of bias. In conclusion, a beneficial effect of neurofeedback for OCD patients was found but also critical limitations on methodology, high heterogeneity among studies, and a putative reporting bias. Future research following high-quality guidelines should be conducted to address the efficacy of biofeedback approaches for OCD&RD.

View Full Paper →

Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques

Peter, Nicole, Kleinjung, Tobias (2019) · Journal of Zhejiang University. Science. B

Tinnitus is defined as a perception of sound without any external sound source. Chronic tinnitus is a frequent condition that can affect the quality of life. So far, no causal cure for tinnitus has been documented, and most pharmacologic and psychosomatic treatment modalities aim to diminish tinnitus' impact on the quality of life. Neuromodulation, a novel therapeutic modality, which aims at alternating nerve activity through a targeted delivery of a stimulus, has emerged as a potential option in tinnitus treatment. This review provides a brief overview of the current neuromodulation techniques as tinnitus treatment options. The main intention is to provide updated knowledge especially for medical professionals counselling tinnitus patients in this emerging field of medicine. Non-invasive methods such as repetitive transcranial magnetic stimulation, transcranial electrical stimulation, neurofeedback, and transcutaneous vagus nerve stimulation were included, as well as invasive methods such as implanted vagus nerve stimulation and invasive brain stimulation. Some of these neuromodulation techniques revealed promising results; nevertheless, further research is needed, especially regarding the pathophysiological principle as to how these neuromodulation techniques work and what neuronal change they induce. Various studies suggest that individually different brain states and networks are involved in the generation and perception of tinnitus. Therefore, in the future, individually tailored neuromodulation strategies could be a promising approach in tinnitus treatment for achieving a more substantial and longer lasting improvement of complaints.

View Full Paper →

Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson's Disease

Philippens, Ingrid H. C. H. M., Wubben, Jacqueline A., Franke, Sigrid K., Hofman, Sam, Langermans, Jan A. M. (2019) · Scientific Reports

Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson's disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson's disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson's disease patients.

View Full Paper →

Neurofeedback training with a low-priced EEG device leads to faster alpha enhancement but shows no effect on cognitive performance: A single-blind, sham-feedback study

Naas, Adrian, Rodrigues, João, Knirsch, Jan-Philip, Sonderegger, Andreas (2019) · PloS One

INTRODUCTION: Findings of recent studies indicate that it is possible to enhance cognitive capacities of healthy individuals by means of individual upper alpha neurofeedback training (NFT). Although these results are promising, most of this research was conducted based on high-priced EEG systems developed for clinical and research purposes. This study addresses the question whether such effects can also be shown with an easy to use and comparably low-priced Emotiv Epoc EEG headset available for the average consumer. In addition, critical voices were raised regarding the control group designs of studies addressing the link between neurofeedback training and cognitive performance. Based on an extensive literature review revealing considerable methodological issues in an important part of the existing research, the present study addressed the question whether individual upper alpha neurofeedback has a positive effect on alpha amplitudes (i.e. increases alpha amplitudes) and short-term memory performance focussing on a methodologically sound, single-blinded, sham controlled design. METHOD: Participants (N = 33) took part in four test sessions over four consecutive days of either neurofeedback training (NFT group) or sham feedback (SF group). In the NFT group, five three-minute periods of visual neurofeedback training were administered each day whereas in the SF group (control group), the same amount of sham feedback was presented. Performance on eight digit-span tests as well as participants' affective states were assessed before and after each of the daily training sessions. RESULTS: NFT did not show an effect on individual upper alpha and cognitive performance. While performance increased in both groups over the course of time, this effect could not be explained by changes in individual upper alpha. Additional analyses however revealed that participants in the NFT group showed faster and larger increase in alpha compared to the SF group. Surprisingly, exploratory analyses showed a significant correlation between the initial alpha level and the alpha improvement during the course of the study. This finding suggests that participants with high initial alpha levels benefit more from alpha NFT interventions. In the discussion, the appearance of the alpha enhancement in the SF group and possible reasons for the absence of a connection between NFT and short-term memory are addressed.

View Full Paper →

Efficacy of Biofeedback for Medical Conditions: an Evidence Map

Kondo, Karli, Noonan, Katherine M., Freeman, Michele, Ayers, Chelsea, Morasco, Benjamin J., Kansagara, Devan (2019) · Journal of General Internal Medicine

BACKGROUND: Biofeedback is increasingly used to treat clinical conditions in a wide range of settings; however, evidence supporting its use remains unclear. The purpose of this evidence map is to illustrate the conditions supported by controlled trials, those that are not, and those in need of more research. METHODS: We searched multiple data sources (MEDLINE, PsycINFO, CINAHL, Epistemonikos, and EBM Reviews through September 2018) for good-quality systematic reviews examining biofeedback for clinical conditions. We included the highest quality, most recent review representing each condition and included only controlled trials from those reviews. We relied on quality ratings reported in included reviews. Outcomes of interest were condition-specific, secondary, and global health outcomes, and harms. For each review, we computed confidence ratings and categorized reported findings as no effect, unclear, or insufficient; evidence of a potential positive effect; or evidence of a positive effect. We present our findings in the form of evidence maps. RESULTS: We included 16 good-quality systematic reviews examining biofeedback alone or as an adjunctive intervention. We found clear, consistent evidence across a large number of trials that biofeedback can reduce headache pain and can provide benefit as adjunctive therapy to men experiencing urinary incontinence after a prostatectomy. Consistent evidence across fewer trials suggests biofeedback may improve fecal incontinence and stroke recovery. There is insufficient evidence to draw conclusions about effects for most conditions including bruxism, labor pain, and Raynaud's. Biofeedback was not beneficial for urinary incontinence in women, nor for hypertension management, but these conclusions are limited by small sample sizes and methodologic limitations of these studies. DISCUSSION: Available evidence suggests that biofeedback is effective for improving urinary incontinence after prostatectomy and headache, and may provide benefit for fecal incontinence and balance and stroke recovery. Further controlled trials across a wide range of conditions are indicated.

View Full Paper →

A pilot study of a novel therapeutic approach to obesity: CNS modification by N.I.R. H.E.G. neurofeedback

Percik, Ruth, Cina, Jenny, Even, Batel, Gitler, Asaf, Geva, Diklah, Seluk, Lior, Livny, Abigail (2019) · Clinical Nutrition (Edinburgh, Scotland)

BACKGROUND & AIMS: Despite the thorough mapping of brain pathways involved in eating behavior, no treatment aimed at modulating eating dysregulation from its neurocognitive root has been established yet. We aimed to evaluate the effect of N.I.R. H.E.G. (Near Infra-Red Hemoencephalography) neurofeedback training on appetite control, weight and food-related brain activity. METHODS: Six healthy male participants with overweight or mild obesity went through 10 N.I.R. H.E.G. neurofeedback sessions designed to practice voluntary activation of the prefrontal cortex. Weight, eating behavior, appetite control and brain activity related to food and self-inhibition based on fMRI were evaluated before and after neurofeedback training. RESULTS: Our study group demonstrated a positive trend of increased self-control and inhibition related to food behavior, reduced weight and increased activation during an fMRI response-inhibition task (Go-No-Go - GNG) in the predefined region of interest (ROI): superior orbitofrontal cortex (sOFC). CONCLUSIONS: N.I.R. H.E.G. holds a promising potential as a feasible neurofeedback platform for modulation of cortical brain circuits involved in self-control and eating behavior and should be further evaluated and developed as a brain modifying device for the treatment and prevention of obesity.

View Full Paper →

Self-directed down-regulation of auditory cortex activity mediated by real-time fMRI neurofeedback augments attentional processes, resting cerebral perfusion, and auditory activation

Sherwood, Matthew S., Parker, Jason G., Diller, Emily E., Ganapathy, Subhashini, Bennett, Kevin B., Esquivel, Carlos R., Nelson, Jeremy T. (2019) · NeuroImage

In this work, we investigated the use of real-time functional magnetic resonance imaging (fMRI) with neurofeedback training (NFT) to teach volitional down-regulation of the auditory cortex (AC) using directed attention strategies as there is a growing interest in the application of fMRI-NFT to treat neurologic disorders. Healthy participants were separated into two groups: the experimental group received real feedback regarding activity in the AC; the control group was supplied sham feedback yoked from a random participant in the experimental group and matched for fMRI-NFT experience. Each participant underwent five fMRI-NFT sessions. Each session contained 2 neurofeedback runs where participants completed alternating blocks of "rest" and "lower" conditions while viewing a continuously-updated bar representing AC activation and listening to continuous noise. Average AC deactivation was extracted from each closed-loop neuromodulation run and used to quantify the control over AC (AC control), which was found to significantly increase across training in the experimental group. Additionally, behavioral testing was completed outside of the MRI on sessions 1 and 5 consisting of a subjective questionnaire to assess attentional control and two quantitative tests of attention. No significant changes in behavior were observed; however, there was a significant correlation between changes in AC control and attentional control. Also, in a neural assessment before and after fMRI-NFT, AC activity in response to continuous noise stimulation was found to significantly decrease across training while changes in AC resting perfusion were found to be significantly greater in the experimental group. These results may be useful in formulating effective therapies outside of the MRI, specifically for chronic tinnitus which is often characterized by hyperactivity of the primary auditory cortex and altered attentional processes. Furthermore, the modulation of attention may be useful in developing therapies for other disorders such as chronic pain.

View Full Paper →

Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review

Young, Kymberly D., Zotev, Vadim, Phillips, Raquel, Misaki, Masaya, Drevets, Wayne C., Bodurka, Jerzy (2018) · Psychiatry and Clinical Neurosciences

Advances in imaging technologies have allowed for the analysis of functional magnetic resonance imaging data in real-time (rtfMRI), leading to the development of neurofeedback (nf) training. This rtfMRI-nf training utilizes functional magnetic resonance imaging (fMRI) tomographic localization capacity to allow a person to see and regulate the localized hemodynamic signal from his or her own brain. In this review, we summarize the results of several studies that have developed and applied neurofeedback training to healthy and depressed individuals with the amygdala as the neurofeedback target and the goal to increase the hemodynamic response during positive autobiographical memory recall. We review these studies and highlight some of the challenges and advances in developing an rtfMRI-nf paradigm for broader use in psychiatric populations. The work described focuses on our line of research aiming to develop the rtfMRI-nf into an intervention, and includes a discussion of the selection of a region of interest for feedback, selecting a control condition, behavioral and cognitive effects of training, and predicting which participants are most likely to respond well to training. While the results of these studies are encouraging and suggest the clinical potential of amygdala rtfMRI-nf in alleviating symptoms of major depressive disorder, larger studies are warranted to confirm its efficacy.

View Full Paper →

Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression

Mehler, David M. A., Sokunbi, Moses O., Habes, Isabelle, Barawi, Kali, Subramanian, Leena, Range, Maxence, Evans, John, Hood, Kerenza, Lührs, Michael, Keedwell, Paul, Goebel, Rainer, Linden, David E. J. (2018) · Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology

Functional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS). Forty-three moderately to severely depressed medicated patients were randomly assigned to five sessions augmentation treatment of either NFE or NFS training. At primary outcome (week 12) no significant group mean HDRS difference was found (B = -0.415 [95% CI -4.847 to 4.016], p = 0.848) for the 32 completers (16 per group). However, across groups depressive symptoms decreased by 43%, and 38% of patients remitted. These improvements lasted until follow-up (week 18). Both groups upregulated target regions to a similar extent. Further, clinical improvement was correlated with an increase in self-efficacy scores. However, the interpretation of clinical improvements remains limited due to lack of a sham-control group. We thus surveyed effects reported for accepted augmentation therapies in depression. Data indicated that our findings exceed expected regression to the mean and placebo effects that have been reported for drug trials and other sham-controlled high-technology interventions. Taken together, we suggest that the experience of successful self-regulation during fMRI-NF training may be therapeutic. We conclude that if fMRI-NF is effective for depression, self-regulation training of higher visual areas may provide an effective alternative.

View Full Paper →

Hemoencephalography self-regulation training and its impact on cognition: A study with schizophrenia and healthy participants

Gomes, J. S., Ducos, D. V., Gadelha, A., Ortiz, B. B., Van Deusen, A. M., Akiba, H. T., Guimaraes, L. S. P., Cordeiro, Q., Trevizol, A. P., Lacerda, A., Dias, A. M. (2018) · Schizophrenia Research

BACKGROUND: Cognitive impairments in schizophrenia are strongly correlated to functional outcome and recovery rates, with no pharmacological agent approved for its treatment. Neurofeedback has emerged as a non-pharmacological approach to enhance neuroplasticity, which consists in inducing voluntary control of brain responses through operant conditioning. METHOD: The effects of hemoencephalography neurofeedback (HEG-NFBK) in 4 brain sites (F7, Fp1, Fp2 and F8) was studied in 8 patients with schizophrenia (SCH, mean age 36.5±9.98) and 12 health controls (mean age 32.17±5.6). We analyzed groups' performance (10 sessions) and cognitive differences in 3 time points (baseline, after training and follow-up) with generalized estimated equations. For SCH we also evaluate the impact on psychopathology. RESULTS: We found a group∗time interaction for HEG-NFBK performance in the left hemisphere sites (F7 an Fp1) and a near-to-significant in the right frontotemporal region (F8), with no group differences and a significant time effect. Most of cognitive domains improved after intervention, including information processing speed, attention processing, working memory, executive functioning, verbal and visual learning. No group∗time interaction was found. Results suggest that both groups benefit from HEG-NFBK training regardless of cognitive differences at baseline. No significant time effects were found for Calgary and PANSS total scale and subscales (positive, negative neither general). CONCLUSION: To our knowledge, this is the first controlled trial showing effects of NFBK on cognitive performance improvement in schizophrenia. Further research investigating the effects of HEG-NFBK training in schizophrenia should be performed.

View Full Paper →

Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia

Rieger, Kathryn, Rarra, Marie-Helene, Diaz Hernandez, Laura, Hubl, Daniela, Koenig, Thomas (2018) · Clinical EEG and neuroscience

Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t(4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t(7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback. Furthermore, independent of the training group, a significant spatial pre-post difference was found in the event-related component P200 ( P = .04).

View Full Paper →

Intrinsic connectivity network dynamics in PTSD during amygdala downregulation using real-time fMRI neurofeedback: A preliminary analysis

Nicholson, Andrew A., Rabellino, Daniela, Densmore, Maria, Frewen, Paul A., Paret, Christian, Kluetsch, Rosemarie, Schmahl, Christian, Théberge, Jean, Ros, Tomas, Neufeld, Richard W. J., McKinnon, Margaret C., Reiss, Jeffrey P., Jetly, Rakesh, Lanius, Ruth A. (2018) · Human Brain Mapping

Posttraumatic stress disorder (PTSD) has been associated with a disturbance in neural intrinsic connectivity networks (ICN), including the central executive network (CEN), default mode network (DMN), and salience network (SN). Here, we conducted a preliminary investigation examining potential changes in ICN recruitment as a function of real-time fMRI neurofeedback (rt-fMRI-NFB) during symptom provocation where we targeted the downregulation of neural response within the amygdala-a key region-of-interest in PTSD neuropathophysiology. Patients with PTSD (n = 14) completed three sessions of rt-fMRI-NFB with the following conditions: (a) regulate: decrease activation in the amygdala while processing personalized trauma words; (b) view: process trauma words while not attempting to regulate the amygdala; and (c) neutral: process neutral words. We found that recruitment of the left CEN increased over neurofeedback runs during the regulate condition, a finding supported by increased dlPFC activation during the regulate as compared to the view condition. In contrast, DMN task-negative recruitment was stable during neurofeedback runs, albeit was the highest during view conditions and increased (normalized) during rest periods. Critically, SN recruitment was high for both the regulate and the view conditions, a finding potentially indicative of CEN modality switching, adaptive learning, and increasing threat/defense processing in PTSD. In conclusion, this study provides provocative, preliminary evidence that downregulation of the amygdala using rt-fMRI-NFB in PTSD is associated with dynamic changes in ICN, an effect similar to those observed using EEG modalities of neurofeedback.

View Full Paper →

Emotion Regulation Using Virtual Environments and Real-Time fMRI Neurofeedback

Lorenzetti, Valentina, Melo, Bruno, Basílio, Rodrigo, Suo, Chao, Yücel, Murat, Tierra-Criollo, Carlos J., Moll, Jorge (2018) · Frontiers in Neurology

Neurofeedback (NFB) enables the voluntary regulation of brain activity, with promising applications to enhance and recover emotion and cognitive processes, and their underlying neurobiology. It remains unclear whether NFB can be used to aid and sustain complex emotions, with ecological validity implications. We provide a technical proof of concept of a novel real-time functional magnetic resonance imaging (rtfMRI) NFB procedure. Using rtfMRI-NFB, we enabled participants to voluntarily enhance their own neural activity while they experienced complex emotions. The rtfMRI-NFB software (FRIEND Engine) was adapted to provide a virtual environment as brain computer interface (BCI) and musical excerpts to induce two emotions (tenderness and anguish), aided by participants' preferred personalized strategies to maximize the intensity of these emotions. Eight participants from two experimental sites performed rtfMRI-NFB on two consecutive days in a counterbalanced design. On one day, rtfMRI-NFB was delivered to participants using a region of interest (ROI) method, while on the other day using a support vector machine (SVM) classifier. Our multimodal VR/NFB approach was technically feasible and robust as a method for real-time measurement of the neural correlates of complex emotional states and their voluntary modulation. Guided by the color changes of the virtual environment BCI during rtfMRI-NFB, participants successfully increased in real time, the activity of the septo-hypothalamic area and the amygdala during the ROI based rtfMRI-NFB, and successfully evoked distributed patterns of brain activity classified as tenderness and anguish during SVM-based rtfMRI-NFB. Offline fMRI analyses confirmed that during tenderness rtfMRI-NFB conditions, participants recruited the septo-hypothalamic area and other regions ascribed to social affiliative emotions (medial frontal/temporal pole and precuneus). During anguish rtfMRI-NFB conditions, participants recruited the amygdala and other dorsolateral prefrontal and additional regions associated with negative affect. These findings were robust and were demonstrable at the individual subject level, and were reflected in self-reported emotion intensity during rtfMRI-NFB, being observed with both ROI and SVM methods and across the two sites. Our multimodal VR/rtfMRI-NFB protocol provides an engaging tool for brain-based interventions to enhance emotional states in healthy subjects and may find applications in clinical conditions associated with anxiety, stress and impaired empathy among others.

View Full Paper →

The Treatment of Autism Spectrum Disorder With Auditory Neurofeedback: A Randomized Placebo Controlled Trial Using the Mente Autism Device

Carrick, Frederick R., Pagnacco, Guido, Hankir, Ahmed, Abdulrahman, Mahera, Zaman, Rashid, Kalambaheti, Emily R., Barton, Derek A., Link, Paul E., Oggero, Elena (2018) · Frontiers in Neurology

Introduction: Children affected by autism spectrum disorder (ASD) often have impairment of social interaction and demonstrate difficulty with emotional communication, display of posture and facial expression, with recognized relationships between postural control mechanisms and cognitive functions. Beside standard biomedical interventions and psychopharmacological treatments, there is increasing interest in the use of alternative non-invasive treatments such as neurofeedback (NFB) that could potentially modulate brain activity resulting in behavioral modification. Methods: Eighty-three ASD subjects were randomized to an Active group receiving NFB using the Mente device and a Control group using a Sham device. Both groups used the device each morning for 45 minutes over a 12 week home based trial without any other clinical interventions. Pre and Post standard ASD questionnaires, qEEG and posturography were used to measure the effectiveness of the treatment. Results: Thirty-four subjects (17 Active and 17 Control) completed the study. Statistically and substantively significant changes were found in several outcome measures for subjects that received the treatment. Similar changes were not detected in the Control group. Conclusions: Our results show that a short 12 week course of NFB using the Mente Autism device can lead to significant changes in brain activity (qEEG), sensorimotor behavior (posturography), and behavior (standardized questionnaires) in ASD children.

View Full Paper →

Low Motivational Incongruence Predicts Successful EEG Resting-state Neurofeedback Performance in Healthy Adults

Diaz Hernandez, Laura, Rieger, Kathryn, Koenig, Thomas (2018) · Neuroscience

Neurofeedback is becoming increasingly sophisticated and widespread, although predictors of successful performance still remain scarce. Here, we explored the possible predictive value of psychological factors and report the results obtained from a neurofeedback training study designed to enhance the self-regulation of spontaneous EEG microstates of a particular type (microstate class D). Specifically, we were interested in life satisfaction (including motivational incongruence), body awareness, personality and trait anxiety. These variables were quantified with questionnaires before neurofeedback. Individual neurofeedback success was established by means of linear mixed models that accounted for the amount of observed target state (microstate class D contribution) as a function of time and training condition: baseline, training and transfer (results shown in Diaz Hernandez et al.). We found a series of significant negative correlations between motivational incongruence and mean percentage increase of microstate D during the condition transfer, across-sessions (36% of common variance) and mean percentage increase of microstate D during the condition training, within-session (42% of common variance). There were no significant correlations related to other questionnaires, besides a trend in a sub-scale of the Life Satisfaction questionnaire. We conclude that motivational incongruence may be a potential predictor for neurofeedback success, at least in the current protocol. The finding may be explained by the interfering effect on neurofeedback performance produced by incompatible simultaneously active psychological processes, which are indirectly measured by the Motivational Incongruence questionnaire.

View Full Paper →

Enhancing health leadership performance using neurotherapy

Swingle, Paul G., Hartney, Elizabeth (2018) · Healthcare Management Forum

The discovery of neuroplasticity means the brain can change, functionally, in response to the environment and to learning. While individuals can develop harmful patterns of brain activity in response to stressors, they can also learn to modify or control neurological conditions associated with specific behaviors. Neurotherapy is one way of changing brain functioning to modify troubling conditions which can impair leadership performance, through responding to feedback on their own brain activity, and enhancing optimal leadership functioning through learning to maximize such cognitive strengths as mental efficiency, focus, creativity, perseverance, and executive functioning. The present article outlines the application of the concept of optimal performance training to organizational leadership in a healthcare context, by describing approaches to neurotherapy and illustrating their application through a case study of a health leader learning to overcome the neurological and emotional sequelae of workplace stress and trauma.

View Full Paper →

Rapid acquisition of dynamic control over DLPFC using real-time fMRI feedback

Van den Boom, Max Alexander, Jansma, Johan Martijn, Ramsey, Nick Franciscus (2018) · European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology

It has been postulated that gaining control over activity in the dorsolateral prefrontal cortex (DLPFC), a key region of the working memory brain network, may be beneficial for cognitive performance and treatment of certain psychiatric disorders. Several studies have reported that, with neurofeedback training, subjects can learn to increase DLPFC activity. However, improvement of dynamic control in terms of switching between low and high activity in DLPFC brain states may potentially constitute more effective self-regulation. Here, we report on feasibility of obtaining dynamic control over DLPFC, meaning the ability to both in- and decrease activity at will, within a single functional MRI scan session. Two groups of healthy volunteers (N = 24) were asked to increase and decrease activity in the left DLPFC as often as possible during fMRI scans (at 7 Tesla), while receiving real-time visual feedback. The experimental group practiced with real-time feedback, whereas the control group received sham feedback. The experimental group significantly increased the speed of intentionally alternating DLPFC activity, while performance of the control group did not change. Analysis of the characteristics of the BOLD signal during successful trials revealed that training with neurofeedback predominantly reduced the time for the DLPFC to return to baseline after activation. These results provide a preliminary indication that people may be able to learn to dynamically down-regulate the level of physiological activity in the DLPFC, and may have implications for psychiatric disorders where DLPFC plays a role.

View Full Paper →

Time course of clinical change following neurofeedback

Rance, Mariela, Walsh, Christopher, Sukhodolsky, Denis G., Pittman, Brian, Qiu, Maolin, Kichuk, Stephen A., Wasylink, Suzanne, Koller, William N., Bloch, Michael, Gruner, Patricia, Scheinost, Dustin, Pittenger, Christopher, Hampson, Michelle (2018) · NeuroImage

Neurofeedback - learning to modulate brain function through real-time monitoring of current brain state - is both a powerful method to perturb and probe brain function and an exciting potential clinical tool. For neurofeedback effects to be useful clinically, they must persist. Here we examine the time course of symptom change following neurofeedback in two clinical populations, combining data from two ongoing neurofeedback studies. This analysis reveals a shared pattern of symptom change, in which symptoms continue to improve for weeks after neurofeedback. This time course has several implications for future neurofeedback studies. Most neurofeedback studies are not designed to test an intervention with this temporal pattern of response. We recommend that new studies incorporate regular follow-up of subjects for weeks or months after the intervention to ensure that the time point of greatest effect is sampled. Furthermore, this time course of continuing clinical change has implications for crossover designs, which may attribute long-term, ongoing effects of real neurofeedback to the control intervention that follows. Finally, interleaving neurofeedback sessions with assessments and examining when clinical improvement peaks may not be an appropriate approach to determine the optimal number of sessions for an application.

View Full Paper →

Improving motivation through real-time fMRI-based self-regulation of the nucleus accumbens

Li, Zhi, Zhang, Chen-Yuan, Huang, Jia, Wang, Yi, Yan, Chao, Li, Ke, Zeng, Ya-Wei, Jin, Zhen, Cheung, Eric F. C., Su, Li, Chan, Raymond C. K. (2018) · Neuropsychology

OBJECTIVE: Impaired nucleus accumbens (NAcc) activation is associated with amotivation and anhedonia, which are resistant to treatment with antipsychotics and antidepressants in schizophrenia. In this study, healthy participants were trained to self-regulate the activation of their NAcc, a brain region that plays an important role in motivation, using real-time functional magnetic resonance imaging (fMRI) neurofeedback. METHOD: The experimental group (N = 19) received feedback from the NAcc, whereas the control group (N = 5) received "sham" feedback from the posterior parahippocampal gyrus, a control brain region not normally related to motivation. All participants were trained to use mental strategies to regulate their NAcc activations in a 3T MRI scanner. RESULTS: For the learning effect of NAcc regulation, we found that the majority of participants (74%) in the experimental group successfully learned to self-regulate the NAcc. They also showed improved behavioral performance in motivation and decreased functional connectivity between the NAcc and the ventral medial prefrontal cortex and an increase in small-world properties in the reward circuit after training, indicating improved information integration in reward processing. However, improvement in motivation and modification of function connectivity were not observed in the sham control group and the participants who failed to self-regulate the NAcc in the experimental group. Self-regulation was influenced by the baseline motivation. CONCLUSIONS: These findings suggest that the NAcc could be self-regulated using real-time fMRI neurofeedback and can result in improved motivation in cognitive tasks. (PsycINFO Database Record

View Full Paper →

Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex

Auer, Tibor, Dewiputri, Wan Ilma, Frahm, Jens, Schweizer, Renate (2018) · Neuroscience

Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.

View Full Paper →

Current practices in clinical neurofeedback with functional MRI-Analysis of a survey using the TIDieR checklist

Randell, Elizabeth, McNamara, Rachel, Subramanian, Leena, Hood, Kerenza, Linden, David (2018) · European Psychiatry: The Journal of the Association of European Psychiatrists

BACKGROUND: A core principle of creating a scientific evidence base is that results can be replicated in independent experiments and in health intervention research. The TIDieR (Template for Intervention Description and Replication) checklist has been developed to aid in summarising key items needed when reporting clinical trials and other well designed evaluations of complex interventions in order that findings can be replicated or built on reliably. Neurofeedback (NF) using functional MRI (fMRI) is a multicomponent intervention that should be considered a complex intervention. The TIDieR checklist (with minor modification to increase applicability in this context) was distributed to NF researchers as a survey of current practice in the design and conduct of clinical studies. The aim was to document practice and convergence between research groups, highlighting areas for discussion and providing a basis for recommendations for harmonisation and standardisation. METHODS: The TIDieR checklist was interpreted and expanded (21 questions) to make it applicable to neurofeedback research studies. Using the web-based Bristol Online Survey (BOS) tool, the revised checklist was disseminated to researchers in the BRAINTRAIN European research collaborative network (supported by the European Commission) and others in the fMRI-neurofeedback community. RESULTS: There were 16 responses to the survey. Responses were reported under eight main headings which covered the six domains of the TIDieR checklist: What, Why, When, How, Where and Who. CONCLUSIONS: This piece of work provides encouraging insight into the ability to be able to map neuroimaging interventions to a structured framework for reporting purposes. Regardless of the considerable variability of design components, all studies could be described in standard terms of diagnostic groups, dose/duration, targeted areas/signals, and psychological strategies and learning models. Recommendations are made which include providing detailed rationale of intervention design in study protocols.

View Full Paper →

Effects of an Integrated Neurofeedback System with Dry Electrodes: EEG Acquisition and Cognition Assessment

Pei, Guangying, Wu, Jinglong, Chen, Duanduan, Guo, Guoxin, Liu, Shuozhen, Hong, Mingxuan, Yan, Tianyi (2018) · Sensors (Basel, Switzerland)

Electroencephalogram (EEG) neurofeedback improves cognitive capacity and behaviors by regulating brain activity, which can lead to cognitive enhancement in healthy people and better rehabilitation in patients. The increased use of EEG neurofeedback highlights the urgent need to reduce the discomfort and preparation time and increase the stability and simplicity of the system's operation. Based on brain-computer interface technology and a multithreading design, we describe a neurofeedback system with an integrated design that incorporates wearable, multichannel, dry electrode EEG acquisition equipment and cognitive function assessment. Then, we evaluated the effectiveness of the system in a single-blind control experiment in healthy people, who increased the alpha frequency band power in a neurofeedback protocol. We found that upregulation of the alpha power density improved working memory following short-term training (only five training sessions in a week), while the attention network regulation may be related to other frequency band activities, such as theta and beta. Our integrated system will be an effective neurofeedback training and cognitive function assessment system for personal and clinical use.

View Full Paper →

Ready to Apply This Research?

Learn how QEEG brain mapping and neurofeedback can help with brain training. Fill out the form below and we'll share full programs and pricing information with you.

* Required fields