theta/beta

theta/beta patterns in EEG reflect specific brain states and functions. QEEG brain mapping measures theta/beta activity across brain regions, revealing individual patterns that guide neurofeedback protocol selection. Explore our 2 research papers covering this topic.

Research Papers

Differential effects of theta/beta and SMR neurofeedback in ADHD on sleep onset latency

Arns, Martijn, Feddema, Ilse, Kenemans, J. Leon (2014) · Frontiers in Human Neuroscience

Recent studies suggest a role for sleep and sleep problems in the etiology of attention deficit hyperactivity disorder (ADHD) and a recent model about the working mechanism of sensori-motor rhythm (SMR) neurofeedback, proposed that this intervention normalizes sleep and thus improves ADHD symptoms such as inattention and hyperactivity/impulsivity. In this study we compared adult ADHD patients (N = 19) to a control group (N = 28) and investigated if differences existed in sleep parameters such as Sleep Onset Latency (SOL), Sleep Duration (DUR) and overall reported sleep problems (PSQI) and if there is an association between sleep-parameters and ADHD symptoms. Secondly, in 37 ADHD patients we investigated the effects of SMR and Theta/Beta (TBR) neurofeedback on ADHD symptoms and sleep parameters and if these sleep parameters may mediate treatment outcome to SMR and TBR neurofeedback. In this study we found a clear continuous relationship between self-reported sleep problems (PSQI) and inattention in adults with- and without-ADHD. TBR neurofeedback resulted in a small reduction of SOL, this change in SOL did not correlate with the change in ADHD symptoms and the reduction in SOL only happened in the last half of treatment, suggesting this is an effect of symptom improvement not specifically related to TBR neurofeedback. SMR neurofeedback specifically reduced the SOL and PSQI score, and the change in SOL and change in PSQI correlated strongly with the change in inattention, and the reduction in SOL was achieved in the first half of treatment, suggesting the reduction in SOL mediated treatment response to SMR neurofeedback. Clinically, TBR and SMR neurofeedback had similar effects on symptom reduction in ADHD (inattention and hyperactivity/impulsivity). These results suggest differential effects and different working mechanisms for TBR and SMR neurofeedback in the treatment of ADHD

View Full Paper →

Neurofeedback for Children with ADHD: A Comparison of SCP and Theta/Beta Protocols

Leins, Ulrike, Goth, Gabriella, Hinterberger, Thilo, Klinger, Christoph, Rumpf, Nicola, Strehl, Ute (2007) · Applied Psychophysiology and Biofeedback

Behavioral and cognitive improvements in children with ADHD have been consistently reported after neurofeedback-treatment. However, neurofeedback has not been commonly accepted as a treatment for ADHD. This study addresses previous methodological shortcomings while comparing a neurofeedback-training of Theta-Beta frequencies and training of slow cortical potentials (SCPs). The study aimed at answering (a) whether patients were able to demonstrate learning of cortical self-regulation, (b) if treatment leads to an improvement in cognition and behavior and (c) if the two experimental groups differ in cognitive and behavioral outcome variables. SCP participants were trained to produce positive and negative SCP-shifts while the Theta/Beta participants were trained to suppress Theta (4–8 Hz) while increasing Beta (12–20 Hz). Participants were blind to group assignment. Assessment included potentially confounding variables. Each group was comprised of 19 children with ADHD (aged 8–13 years). The treatment procedure consisted of three phases of 10 sessions each. Both groups were able to intentionally regulate cortical activity and improved in attention and IQ. Parents and teachers reported significant behavioral and cognitive improvements. Clinical effects for both groups remained stable six months after treatment. Groups did not differ in behavioural or cognitive outcome.

View Full Paper →

Related Topics

Browse All Topics →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss theta/beta and how neurofeedback training can help

* Required fields