motor cortex
Research Papers
Showing 6 of 9Magnetoencephalographic neurofeedback training decreasesβ-low-γphase-amplitude coupling of the motor cortex of healthy adults: a double-blinded randomized crossover feasibility study
Objective.The coupling between the beta (13-30 Hz) phase and low gamma (50-100 Hz) amplitude in the motor cortex is thought to regulate motor performance. Abnormal phase-amplitude coupling (PAC) of beta-low gamma (β-low-γPAC) is associated with motor symptoms of Parkinson's disease. However, the causal relationship betweenβ-low-γPAC and motor performance in healthy subjects is unknown. We hypothesized that healthy subjects could change the strength of theβ-low-γPAC in the resting state by neurofeedback training (NFT) to control theβ-low-γPAC, such that the motor performance changes in accordance with the changes inβ-low-γPAC in the resting state.Approach.We developed an NFT to control the strength of theβ-low-γPAC in the motor cortex, which was evaluated by magnetoencephalography (MEG) using a current source estimation technique. Twenty subjects were enrolled in a double-blind randomized crossover trial to test the feasibility of the MEG NFT. In the NFT for 2 d, the subjects were instructed to reduce the size of a black circle whose radius was proportional (down-training) or inversely proportional (up-training) to the strength of theβ-low-γPAC. The reaction times (RTs) to press a button according to some cues were evaluated before and after training. This study was registered at ClinicalTrials.gov (NCT03837548) and UMIN-CTR (UMIN000032937).Main results.Theβ-low-γPAC during the resting state was significantly decreased after down-training, although not significantly after up-training. RTs tended to decrease after both trainings, however the differences were not statistically significant. There was no significant correlation between the changes inβ-low-γPAC during rest and RTs.Significance.The proposed MEG NFT was demonstrated to change theβ-low-γPAC of the motor cortex in healthy subjects. However, a relationship between PAC and RT has not yet been demonstrated.
View Full Paper →fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery
Compared to functional magnetic resonance imaging (fMRI), functional near infrared spectroscopy (fNIRS) has several advantages that make it particularly interesting for neurofeedback (NFB). A pre-requisite for NFB applications is that with fNIRS, signals from the brain region of interest can be measured. This study focused on the supplementary motor area (SMA). Healthy older participants (N = 16) completed separate continuous-wave (CW-) fNIRS and (f)MRI sessions. Data were collected for executed and imagined hand movements (motor imagery, MI), and for MI of whole body movements. Individual anatomical data were used to (i) define the regions of interest for fMRI analysis, to (ii) extract the fMRI BOLD response from the cortical regions corresponding to the fNIRS channels, and (iii) to select fNIRS channels. Concentration changes in oxygenated ([Formula: see text]) and deoxygenated ([Formula: see text]) hemoglobin were considered in the analyses. Results revealed subtle differences between the different MI tasks, indicating that for whole body MI movements as well as for MI of hand movements [Formula: see text] is the more specific signal. Selection of the fNIRS channel set based on individual anatomy did not improve the results. Overall, the study indicates that in terms of spatial specificity and task sensitivity SMA activation can be reliably measured with CW-fNIRS.
View Full Paper →Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson's Disease
Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson's disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson's disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson's disease patients.
View Full Paper →The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
There is increasing interest in exploring the use of functional MRI neurofeedback (fMRI-NF) as a therapeutic technique for a range of neurological conditions such as stroke and Parkinson's disease (PD). One main therapeutic potential of fMRI-NF is to enhance volitional control of damaged or dysfunctional neural nodes and networks via a closed-loop feedback model using mental imagery as the catalyst of self-regulation. The choice of target node/network and direction of regulation (increase or decrease activity) are central design considerations in fMRI-NF studies. Whilst it remains unclear whether the primary motor cortex (M1) can be activated during motor imagery, the supplementary motor area (SMA) has been robustly activated during motor imagery. Such differences in the regulation potential between primary and supplementary motor cortex are important because these areas can be differentially affected by a stroke or PD, and the choice of fMRI-NF target and grade of self-regulation of activity likely have substantial influence on the clinical effects and cost effectiveness of NF-based interventions. In this study we therefore investigated firstly whether healthy subjects would be able to achieve self-regulation of the hand-representation areas of M1 and the SMA using fMRI-NF training. There was a significant decrease in M1 neural activity during fMRI-NF, whereas SMA neural activity was increased, albeit not with the predicated graded effect. This study has important implications for fMRI-NF protocols that employ motor imagery to modulate activity in specific target regions of the brain and to determine how they may be tailored for neurorehabilitation.
View Full Paper →Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex
Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.
View Full Paper →Intermittent "real-time" fMRI feedback is superior to continuous presentation for a motor imagery task: a pilot study
BACKGROUND: Real-time functional MRI feedback (RTfMRIf) is a developing technique, with unanswered methodological questions. Given a delay of seconds between neural activity and the measurable hemodynamic response, one issue is the optimal method for presentation of neurofeedback to subjects. The primary objective of this preliminary study was to compare the methods of continuous and intermittent presentation of neural feedback on targeted brain activity. METHODS: Thirteen participants performed a motor imagery task and were instructed to increase activation in an individually defined region of left premotor cortex using RTfMRIf. The fMRI signal change was compared between real and false feedback for scans with either continuous or intermittent feedback presentation. RESULTS: More individuals were able to increase their fMRI signal with intermittent feedback, while some individuals had decreased signal with continuous feedback. The evaluation of feedback itself activated an extensive amount of brain regions, and false feedback resulted in brain activation outside of the individually defined region of interest. CONCLUSIONS: As implemented in this study, intermittent presentation of feedback is more effective than continuous presentation in promoting self-modulation of brain activity. Furthermore, it appears that the process of evaluating feedback involves many brain regions that can be isolated using intermittent presentation.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss motor cortex and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →