Home/Research/Peak Resilience

Peak Resilience: Stress, Mood, & Trauma

Studies on anxiety disorders, stress management, emotional regulation, and trauma recovery.

📚

Research Library

We've curated 136 research papers for this use case. Dr. Hill and the Peak Brain team are reviewing and summarizing these papers to provide accessible, actionable insights.

Citations and abstracts shown below. Detailed summaries, key findings, and clinical applications will be added as reviews are completed.

Research Citations

Page 1 of 3Next →
Showing 1-50 of 136 papers

Does baseline EEG activity differ in the transition to or from a chronic pain state? A longitudinal study

Schuurman, Britt B., Vossen, Catherine J., van Amelsvoort, Therese A. M. J., Lousberg, Richel L. (2023) · Pain Practice: The Official Journal of World Institute of Pain

BACKGROUND AND AIM: Identifying EEG brain markers might yield better mechanistic insights into how chronic pain develops and could be treated. An existing longitudinal EEG study gave us the opportunity to determine whether the development of pain is accompanied by less alpha power-ie, a "relaxed" brain state-and vice versa. METHODS: Five-minute resting EEG with the eyes open was measured 2 times in 95 subjects at T0 (baseline) and T1 (6 months later). Based on the Short-Form Health Survey and Brief Pain Inventory questionnaire, subjects were divided into 4 groups: staying pain-free (n = 44), developing chronic pain (n = 8), becoming pain-free (n = 15), and ongoing chronic pain (n = 28). The EEG data of 14 electrodes were analyzed by multilevel regression. RESULTS: The group that developed chronic pain demonstrated less power in the lower-frequency bands over time during the resting state EEG, whereas the transition to a pain-free state had the opposite pattern. Thus, the a priori hypothesis was confirmed. CONCLUSIONS: Transitions in pain states are linked to a change in baseline EEG activity. Future research is needed to replicate these results in a larger study sample and in targeted clinical populations. Furthermore, these results might be beneficial in optimizing neurofeedback algorithms for the treatment of chronic pain.

View Full Paper →

Application of Artificial Intelligence Techniques for Brain–Computer Interface in Mental Fatigue Detection: A Systematic Review (2011–2022)

Yaacob, Hamwira, Hossain, Farhad, Shari, Sharunizam, Khare, Smith K., Ooi, Chui Ping, Acharya, U. Rajendra (2023) · IEEE Access

Mental fatigue is a psychophysical condition with a significant adverse effect on daily life, compromising both physical and mental wellness. We are experiencing challenges in this fast-changing environment, and mental fatigue problems are becoming more prominent. This demands an urgent need to explore an effective and accurate automated system for timely mental fatigue detection. Therefore, we present a systematic review of brain-computer interface (BCI) studies for mental fatigue detection using artificial intelligent (AI) techniques published in Scopus, IEEE Explore, PubMed and Web of Science (WOS) between 2011 and 2022. The Boolean search expression that comprised (((ELECTROENCEPHALOGRAM) AND (BCI)) AND (FATIGUE CLASSIFICATION)) AND (BRAIN-COMPUTER INTERFACE) has been used to select the articles. Through the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) methodology, we selected 39 out of 562 articles. Our review identified the research gap in employing BCI for mental fatigue intervention through automated neurofeedback. The AI techniques employed to develop EEG-based mental fatigue detection are also discussed. We have presented comprehensive challenges and future recommendations from the gaps identified in discussions. The future direction includes data fusion, hybrid classification models, availability of public datasets, uncertainty, explainability, and hardware implementation strategies.

View Full Paper →

Effects of occupational therapy on quality of life in breast cancer patients: A systematic review and meta-analysis

He, Kang, Jiang, Junjie, Chen, Mengmeng, Wang, Taiwei, Huang, Xuemiao, Zhu, Ruiting, Zhang, Zhiyuan, Chen, Junyu, Zhao, Lijing (2023) · Medicine

BACKGROUND: The objective was to discuss the impact of occupational therapy on different domains of quality of life in breast cancer patients. We performed a literature search to identify articles published before June 27, 2023, using the following databases: PubMed, Embase, Web of Science, Cochrane Library, and Scopus. OBJECTIVE: The objective was to discuss the impact of occupational therapy on different domains of quality of life in breast cancer patients. DATA SOURCES: We performed a literature search to identify articles published before June 27, 2023, using the following databases: PubMed, Embase, Web of Science, Cochrane Library, and Scopus. METHODS: This study was reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. Randomized controlled trials that reported the effects of occupational therapy on quality of life in breast cancer patients were identified. Two reviewers independently assessed eligibility, extracted data, and determined risks of bias. Pooled standardized mean differences (SMDs) with 95% confidence intervals (CIs) were estimated using random-effects meta-analyses. Galbraith plots, meta-regression analysis, subgroup analysis, and sensitivity analysis were used to identify heterogeneity in treatment effects. RESULTS: Eight studies were included, with a total of 543 patients. The experimental group exhibited better global health (pooled SMD = 0.640, 95% CI = 0.251-1.028, P = .001), physical health (pooled SMD = 0.640, 95% CI = 0.251-1.028, P = .019), social health (pooled SMD = 0.251, 95% CI = 0.011-0.490, P = .040), and cognitive function (pooled SMD = 0.863, 95% CI = 0.266-1.460, P = .05) and improve fatigue (pooled SMD = -0.389, 95% CI = -0.586 to -0.192, P = .000), and role function (pooled SMD = 0.287, 95% CI = 0.029-0.546, P = .029) than the control group. The 2 groups exhibited comparable emotional health (pooled SMD = 0.243, 95% CI = -0.051 to 0.536, P = .105) and pain (pooled SMD = -0.312, 95% CI = -0.660 to 0.036, P = .079). CONCLUSION: The current evidence shows that occupational therapy can improve the quality of life of breast cancer patients, especially their global health, physical health, social health, cognitive function, fatigue, and role function.

View Full Paper →

Exploring electroencephalographic infraslow neurofeedback treatment for chronic low back pain: a double-blinded safety and feasibility randomized placebo-controlled trial

Adhia, Divya Bharatkumar, Mani, Ramakrishnan, Mathew, Jerin, O'Leary, Finella, Smith, Mark, Vanneste, Sven, De Ridder, Dirk (2023) · Scientific Reports

Chronic low back pain (CLBP) is a disabling condition worldwide. In CLBP, neuroimaging studies demonstrate abnormal activities in cortical areas responsible for pain modulation, emotional, and sensory components of pain experience [i.e., pregenual and dorsal anterior cingulate cortex (pgACC, dACC), and somatosensory cortex (SSC), respectively]. This pilot study, conducted in a university setting, evaluated the feasibility, safety, and acceptability of a novel electroencephalography-based infraslow-neurofeedback (EEG ISF-NF) technique for retraining activities in pgACC, dACC and SSC and explored its effects on pain and disability. Participants with CLBP (n = 60), recruited between July'20 to March'21, received 12 sessions of either: ISF-NF targeting pgACC, dACC + SSC, a ratio of pgACC*2/dACC + SSC, or Placebo-NF. Descriptive statistics demonstrated that ISF-NF training is feasible [recruitment rate (7 participants/month), dropouts (25%; 20-27%), and adherence (80%; 73-88%)], safe (no adverse events reported), and was moderate to highly acceptable [Mean ± SD: 7.8 ± 2.0 (pgACC), 7.5 ± 2.7 (dACC + SCC), 8.2 ± 1.9 (Ratio), and 7.7 ± 1.5 (Placebo)]. ISF-NF targeting pgACC demonstrated the most favourable clinical outcomes, with a higher proportion of participants exhibiting a clinically meaningful reduction in pain severity [53%; MD (95% CI): - 1.9 (- 2.7, - 1.0)], interference [80%; MD (95% CI): - 2.3 (- 3.5, - 1.2)], and disability [73%; MD (95% CI): - 4.5 (- 6.1, - 2.9)] at 1-month follow-up. ISF-NF training is a feasible, safe, and an acceptable treatment approach for CLBP.

View Full Paper →

Neural correlates of control over pain in fibromyalgia patients

Mosch, Benjamin, Hagena, Verena, Herpertz, Stephan, Ruttorf, Michaela, Diers, Martin (2023) · NeuroImage. Clinical

The perceived lack of control over the experience of pain is arguably-one major cause of agony and impaired life quality in patients with chronic pain disorders as fibromyalgia (FM). The way perceived control affects subjective pain as well as the underlying neural mechanisms have so far not been investigated in chronic pain. We used functional magnetic resonance imaging (fMRI) to examine the neural correlates of self-controlled compared to computer-controlled heat pain in healthy controls (HC, n = 21) and FM patients (n = 23). Contrary to HC, FM failed to activate brain areas usually involved in pain modulation as well as reappraisal processes (right ventrolateral (VLPFC), dorsolateral prefrontal cortex (DLPFC) and dorsal anterior cingulate cortex (dACC)). Computer-controlled (compared to self-controlled) heat revealed significant activations of the orbitofrontal cortex (OFC) in HC, whereas FM activated structures that are typically involved in neural emotion processing (amygdala, parahippocampal gyrus). Additionally, FM displayed disrupted functional connectivity (FC) of the VLPFC, DLPFC and dACC with somatosensory and pain (inhibition)-related areas during self-controlled heat stimulation as well as significantly decreased gray matter (GM) volumes compared to HC in DLPFC and dACC. The described functional and structural changes provide evidence for far-reaching impairments concerning pain-modulatory processes in FM. Our investigation represents a first demonstration of dysfunctional neural pain modulation through experienced control in FM according to the extensive functional and structural changes in relevant sensory, limbic and associative brain areas. These areas may be targeted in clinical pain therapeutic methods involving TMS, neurofeedback or cognitive behavioral trainings.

View Full Paper →

Neurofeedback for post-traumatic stress disorder: systematic review and meta-analysis of clinical and neurophysiological outcomes

Askovic, Mirjana, Soh, Nerissa, Elhindi, James, Harris, Anthony W. F. (2023) · European Journal of Psychotraumatology

Background: Posttraumatic stress disorder (PTSD) is a debilitating condition affecting millions of people worldwide. Existing treatments often fail to address the complexity of its symptoms and functional impairments resulting from severe and prolonged trauma. Electroencephalographic Neurofeedback (NFB) has emerged as a promising treatment that aims to reduce the symptoms of PTSD by modulating brain activity.Objective: We conducted a systematic review and meta-analysis of ten clinical trials to answer the question: how effective is NFB in addressing PTSD and other associated symptoms across different trauma populations, and are these improvements related to neurophysiological changes?Method: The review followed the Preferred Reporting Items for Systematic Reviews and Meta analyses guidelines. We considered all published and unpublished randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) involving adults with PTSD as a primary diagnosis without exclusion by type of trauma, co-morbid diagnosis, locality, or sex. Ten controlled studies were included; seven RCTs and three NRSIs with a total number of participants n = 293 (128 male). Only RCTs were included in the meta-analysis (215 participants; 88 male).Results: All included studies showed an advantage of NFB over control conditions in reducing symptoms of PTSD, with indications of improvement in symptoms of anxiety and depression and related neurophysiological changes. Meta-analysis of the pooled data shows a significant reduction in PTSD symptoms post-treatment SMD of -1.76 (95% CI -2.69, -0.83), and the mean remission rate was higher in the NFB group (79.3%) compared to the control group (24.4%). However, the studies reviewed were mostly small, with heterogeneous populations and varied quality.Conclusions: The effect of NFB on the symptoms of PTSD was moderate and mechanistic evidence suggested that NFB leads to therapeutic changes in brain functioning. Future research should focus on more rigorous methodological designs, expanded sample size and longer follow-up.

View Full Paper →

Neurofeedback Training With an Electroencephalogram-Based Brain-Computer Interface Enhances Emotion Regulation

Huang, Weichen, Wu, Wei, Lucas, Molly V., Huang, Haiyun, Wen, Zhenfu, Li, Yuanqing (2023) · IEEE Transactions on Affective Computing

Emotion regulation plays a vital role in human beings daily lives by helping them deal with social problems and protects mental and physical health. However, objective evaluation of the efficacy of emotion regulation and assessment of the improvement in emotion regulation ability at the individual level remain challenging. In this study, we leveraged neurofeedback training to design a real-time EEG-based brain-computer interface (BCI) system for users to effectively regulate their emotions. Twenty healthy subjects performed 10 BCI-based neurofeedback training sessions to regulate their emotion towards a specific emotional state (positive, negative, or neutral), while their EEG signals were analyzed in real time via machine learning to predict their emotional states. The prediction results were presented as feedback on the screen to inform the subjects of their immediate emotional state, based on which the subjects could update their strategies for emotion regulation. The experimental results indicated that the subjects improved their ability to regulate these emotions through our BCI neurofeedback training. Further EEG-based spectrum analysis revealed how each emotional state was related to specific EEG patterns, which were progressively enhanced through long-term training. These results together suggested that long-term EEG-based neurofeedback training could be a promising tool for helping people with emotional or mental disorders.

View Full Paper →

Amygdala downregulation training using fMRI neurofeedback in post-traumatic stress disorder: a randomized, double-blind trial

Zhao, Zhiying, Duek, Or, Seidemann, Rebecca, Gordon, Charles, Walsh, Christopher, Romaker, Emma, Koller, William N., Horvath, Mark, Awasthi, Jitendra, Wang, Yao, O'Brien, Erin, Fichtenholtz, Harlan, Hampson, Michelle, Harpaz-Rotem, Ilan (2023) · Translational Psychiatry

Hyperactivation of amygdala is a neural marker for post-traumatic stress disorder (PTSD) and improvement in control over amygdala activity has been associated with treatment success in PTSD. In this randomized, double-blind clinical trial we evaluated the efficacy of a real-time fMRI neurofeedback intervention designed to train control over amygdala activity following trauma recall. Twenty-five patients with PTSD completed three sessions of neurofeedback training in which they attempted to downregulate the feedback signal after exposure to personalized trauma scripts. For subjects in the active experimental group (N = 14), the feedback signal was from a functionally localized region of their amygdala associated with trauma recall. For subjects in the control group (N = 11), yoked-sham feedback was provided. Changes in control over the amygdala and PTSD symptoms served as the primary and secondary outcome measurements, respectively. We found significantly greater improvements in control over amygdala activity in the active group than in the control group 30-days following the intervention. Both groups showed improvements in symptom scores, however the symptom reduction in the active group was not significantly greater than in the control group. Our finding of greater improvement in amygdala control suggests potential clinical application of neurofeedback in PTSD treatment. Thus, further development of amygdala neurofeedback training in PTSD treatment, including evaluation in larger samples, is warranted.

View Full Paper →

A new form of neurotherapy for a patient with anxiety disorder and anomic aphasia after neurosurgery for a ruptured brain aneurysm post-COVID-19

Morga, Rafał, Góral-Półrola, Jolanta, Goździewska, Małgorzata, Krupa, Kamil, Pąchalska, Maria (2023) · Annals of agricultural and environmental medicine: AAEM

INTRODUCTION AND OBJECTIVE: The aim of this study is to evaluate the effectiveness of a new, neuromarker-based form of neurotherapy for a patient with anxiety disorders and anomic aphasia after a neurosurgical operation for a ruptured brain aneurysm of the left middle cerebral artery (MCA), detected after COVID-19. CASE REPORT: A 78-year-old right-handed patient, not previously treated for any chronic diseases except stage II hypertension, contracted COVID-19, confirmed by real time RT- PCR. He was treated on an outpatient basis. Two months later, he developed an unusually severe headache and disorientation. A ruptured brain aneurysm of the left MCA was diagnosed. The patient underwent a neurosurgical operation - clipping- very well, with no neurological or neuropsychiatric disorders, except for mild aphasia and occasional anxiety attacks. Four weeks after surgery, anxiety disorder and mild aphasia worsened. High levels of anxiety on the Hospital Anxiety and Depression (HAD) Scale, and mild anomic aphasia in the Boston Naming Test (BNT) was found. A functional neuromarker of anxiety in comparision to a normative database (Human Brain Index, HBI) was detected. The patient was offered a new, neuromarker-based form of neurotherapy, which proved effective in reducing the disorders. The patient improved in social communication and is gradually returning to social activities. CONCLUSION: In patients with anxiety disorders, anomic aphasia and related difficulties in social functioning after aSAH, especially after COVID-19, multidimensional diagnosis and therapy, preferably based on functional neuromarkers, is needed. HBI methodology can be successfully used in the neurodiagnosis and implementation of individualized neurotherapy for such patients.

View Full Paper →

Inhibitory control as a potential treatment target for obesity

de Klerk, M. T., Smeets, P. a. M., la Fleur, S. E. (2023) · Nutritional Neuroscience

OBJECTIVES: Strong reward responsiveness to food and insufficient inhibitory control are thought to be implicated in the development and maintenance of obesity. This narrative review addresses the role of inhibitory control in obesity and weight loss, and in how far inhibitory control is a promising target for weight loss interventions. METHODS: PubMed, Web of Science, and Google Scholar were searched for papers up to May 2021. 41 papers were included. RESULTS: Individuals with obesity have poorer food-specific inhibitory control, particularly when hungry, and less concurrent activation of inhibitory brain areas. Moreover, this was strongly predictive of future weight gain. More activation of inhibitory brain areas, on the other hand, was predictive of weight loss: individuals with successful weight loss initially show inhibitory brain activity comparable to that of normal weight individuals. When successful weight maintenance is achieved for at least 1 year, this inhibitory activity is further increased. Interventions targeting inhibitory control in obese individuals have divergent effects. Firstly, food-specific inhibitory control training is particularly effective for people with low inhibitory control and high BMI. Secondly, neuromodulation paradigms are rather heterogeneous: although rTMS to the left dorsolateral prefrontal cortex induced some weight-loss, multiple sessions of tDCS reduced food consumption (desire) and induced weight loss in two thirds of the papers. Thirdly, neurofeedback results in successful upregulation of brain activity and connectivity, but occasionally leads to increased food intake. In conclusion, inhibitory control is implicated in obesity. It can be targeted to promote weight loss although major weight losses have not been achieved.

View Full Paper →

Real-Time fMRI Functional Connectivity Neurofeedback Reducing Repetitive Negative Thinking in Depression: A Double-Blind, Randomized, Sham-Controlled Proof-of-Concept Trial

Tsuchiyagaito, Aki, Misaki, Masaya, Kirlic, Namik, Yu, Xiaoqian, Sánchez, Stella M., Cochran, Gabe, Stewart, Jennifer L., Smith, Ryan, Fitzgerald, Kate D., Rohan, Michael L., Paulus, Martin P., Guinjoan, Salvador M. (2023) · Psychotherapy and Psychosomatics

INTRODUCTION: Repetitive negative thinking (RNT) is a cognitive process focusing on self-relevant and negative experiences, leading to a poor prognosis of major depressive disorder (MDD). We previously identified that connectivity between the precuneus/posterior cingulate cortex (PCC) and right temporoparietal junction (rTPJ) was positively correlated with levels of RNT. OBJECTIVE: In this double-blind, randomized, sham-controlled, proof-of-concept trial, we employed real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) to delineate the neural processes that may be causally linked to RNT and could potentially become treatment targets for MDD. METHODS: MDD-affected individuals were assigned to either active (n = 20) or sham feedback group (n = 19). RNT was measured by the Ruminative Response Scale-brooding subscale (RRS-B) before and 1 week after the intervention. RESULTS: Individuals in the active but not in the sham group showed a significant reduction in the RRS-B; however, a greater reduction in the PCC-rTPJ connectivity was unrelated to a greater reduction in the RRS-B. Exploratory analyses revealed that a greater reduction in the retrosplenial cortex (RSC)-rTPJ connectivity yielded a more pronounced reduction in the RRS-B in the active but not in the sham group. CONCLUSIONS: RtfMRI-nf was effective in reducing RNT. Considering the underlying mechanism of rtfMIR-nf, the RSC and rTPJ could be part of a network (i.e., default mode network) that might collectively affect the intensity of RNT. Understanding the relationship between the functional organization of targeted neural changes and clinical metrics, such as RNT, has the potential to guide the development of mechanism-based treatment of MDD.

View Full Paper →

Effectiveness of Biofeedback in Individuals with Awake Bruxism Compared to Other Types of Treatment: A Systematic Review

Vieira, Maryllian de Albuquerque, Oliveira-Souza, Ana Izabela Sobral de, Hahn, Gesa, Bähr, Luisa, Armijo-Olivo, Susan, Ferreira, Ana Paula de Lima (2023) · International Journal of Environmental Research and Public Health

Excessive masticatory muscle activity is generally present in awake bruxism, which is related to increased anxiety and stress. It has been hypothesized that biofeedback could potentially manage awake bruxism, however, its effectiveness has not been empirically analyzed in a systematic manner. Therefore, this systematic review was designed to determine the effectiveness of biofeedback compared to other therapies in adults with awake bruxism. Extensive searches in five databases looking for randomized controlled trials (RCTs) that included biofeedback to manage awake bruxism were targeted. The risk of bias (RoB) assessment was conducted using the Cochrane RoB-2 tool. Overall, four studies were included in this systematic review, all of which used the electromyographic activity of the masticatory muscles during the day and night as the main endpoint. Auditory and visual biofeedback could reduce the excessive level of masticatory muscle activity in a few days of intervention. The majority of the included studies had a high RoB and only one study had a low RoB. The standardization of the biofeedback protocols was also inconsistent, which makes it difficult to establish the ideal protocol for the use of biofeedback in awake bruxism. Thus, it is proposed that future studies seek to reduce methodological risks and obtain more robust samples.

View Full Paper →

Reducing default mode network connectivity with mindfulness-based fMRI neurofeedback: a pilot study among adolescents with affective disorder history

Zhang, Jiahe, Raya, Jovicarole, Morfini, Francesca, Urban, Zoi, Pagliaccio, David, Yendiki, Anastasia, Auerbach, Randy P., Bauer, Clemens C. C., Whitfield-Gabrieli, Susan (2023) · Molecular Psychiatry

Adolescents experience alarmingly high rates of major depressive disorder (MDD), however, gold-standard treatments are only effective for ~50% of youth. Accordingly, there is a critical need to develop novel interventions, particularly ones that target neural mechanisms believed to potentiate depressive symptoms. Directly addressing this gap, we developed mindfulness-based fMRI neurofeedback (mbNF) for adolescents that aims to reduce default mode network (DMN) hyperconnectivity, which has been implicated in the onset and maintenance of MDD. In this proof-of-concept study, adolescents (n = 9) with a lifetime history of depression and/or anxiety were administered clinical interviews and self-report questionnaires, and each participant's DMN and central executive network (CEN) were personalized using a resting state fMRI localizer. After the localizer scan, adolescents completed a brief mindfulness training followed by a mbNF session in the scanner wherein they were instructed to volitionally reduce DMN relative to CEN activation by practicing mindfulness meditation. Several promising findings emerged. First, mbNF successfully engaged the target brain state during neurofeedback; participants spent more time in the target state with DMN activation lower than CEN activation. Second, in each of the nine adolescents, mbNF led to significantly reduced within-DMN connectivity, which correlated with post-mbNF increases in state mindfulness. Last, a reduction of within-DMN connectivity mediated the association between better mbNF performance and increased state mindfulness. These findings demonstrate that personalized mbNF can effectively and non-invasively modulate the intrinsic networks associated with the emergence and persistence of depressive symptoms during adolescence.

View Full Paper →

Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review

Zebhauser, Paul Theo, Hohn, Vanessa D., Ploner, Markus (2023) · Pain

Reliable and objective biomarkers promise to improve the assessment and treatment of chronic pain. Resting-state electroencephalography (EEG) is broadly available, easy to use, and cost efficient and, therefore, appealing as a potential biomarker of chronic pain. However, results of EEG studies are heterogeneous. Therefore, we conducted a systematic review (PROSPERO CRD42021272622) of quantitative resting-state EEG and magnetoencephalography (MEG) studies in adult patients with different types of chronic pain. We excluded populations with severe psychiatric or neurologic comorbidity. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semiquantitative data synthesis was conducted using modified albatross plots. We included 76 studies after searching MEDLINE, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and EMBASE. For cross-sectional studies that can serve to develop diagnostic biomarkers, we found higher theta and beta power in patients with chronic pain than in healthy participants. For longitudinal studies, which can yield monitoring and/or predictive biomarkers, we found no clear associations of pain relief with M/EEG measures. Similarly, descriptive studies that can yield diagnostic or monitoring biomarkers showed no clear correlations of pain intensity with M/EEG measures. Risk of bias was high in many studies and domains. Together, this systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of chronic pain. Beyond, this review might help to guide future M/EEG studies on the development of pain biomarkers.

View Full Paper →

The Effectiveness of a Neurofeedback-Assisted Mindfulness Training Program Using a Mobile App on Stress Reduction in Employees: Randomized Controlled Trial

Min, Beomjun, Park, Heyeon, Kim, Johanna Inhyang, Lee, Sungmin, Back, Soyoung, Lee, Eunhwa, Oh, Sohee, Yun, Je-Yeon, Kim, Bung-Nyun, Kim, Yonghoon, Hwang, JungHyun, Lee, Sanghyop, Kim, Jeong-Hyun (2023) · JMIR mHealth and uHealth

BACKGROUND: Mindfulness-based training programs have consistently shown efficacy in stress reduction. However, questions regarding the optimal duration and most effective delivery methods remain. OBJECTIVE: This research explores a 4-week neurofeedback-assisted mindfulness training for employees via a mobile app. The study's core query is whether incorporating neurofeedback can amplify the benefits on stress reduction and related metrics compared with conventional mindfulness training. METHODS: A total of 92 full-time employees were randomized into 3 groups: group 1 received mobile mindfulness training with neurofeedback assistance (n=29, mean age 39.72 years); group 2 received mobile mindfulness training without neurofeedback (n=32, mean age 37.66 years); and group 3 were given self-learning paper materials on stress management during their first visit (n=31, mean age 38.65 years). The primary outcomes were perceived stress and resilience scales. The secondary outcomes were mindfulness awareness, emotional labor, occupational stress, insomnia, and depression. Heart rate variability and electroencephalography were measured for physiological outcomes. These measurements were collected at 3 different times, namely, at baseline, immediately after training, and at a 4-week follow-up. The generalized estimating equation model was used for data analysis. RESULTS: The 4-week program showed significant stress reduction (Wald χ22=107.167, P<.001) and improvements in psychological indices including resilience, emotional labor, insomnia, and depression. A significant interaction was observed in resilience (time × group, Wald χ42=10.846, P=.02). The post hoc analysis showed a statistically significant difference between groups 1 (least squares mean [LSM] 21.62, SE 0.55) and 3 (LSM 19.90, SE 0.61) at the posttraining assessment (P=.008). Group 1 showed a significant improvement (P<.001) at the posttraining assessment, with continued improvements through the 1-month follow-up assessment period (LSM 21.55, SE 0.61). Physiological indices were analyzed only for data of 67 participants (22 in group 1, 22 in group 2, and 23 in group 3) due to the data quality. The relaxation index (ratio of alpha to high beta power) from the right electroencephalography channel showed a significant interaction (time × group, Wald χ22=6.947, P=.03), with group 1 revealing the highest improvement (LSM 0.43, SE 0.15) compared with groups 2 (LSM -0.11, SE 0.10) and 3 (LSM 0.12, SE 0.10) at the 1-month follow-up assessment. CONCLUSIONS: The study demonstrated that the neurofeedback-assisted group achieved superior outcomes in resilience and relaxation during the 4-week mobile mindfulness program. Further research with larger samples and long-term follow-up is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT03787407; https://clinicaltrials.gov/ct2/show/NCT03787407.

View Full Paper →

Application of functional connectivity neurofeedback in patients with treatment-resistant depression: A preliminary report

Takamura, Masahiro, Okada, Go, Kamishikiryo, Toshiharu, Itai, Eri, Kato, Miyuki, Motegi, Tomokazu, Taylor, Jessica Elizabeth, Yoshioka, Toshinori, Kawato, Mitsuo, Okamoto, Yasumasa (2023) · Journal of Affective Disorders Reports

Functional connectivity neurofeedback (FCNef) is a technique that modulates synchronous neural activity through training and is being investigated as a potential novel treatment for patients suffering from treatment-resistant depression (TRD). An FCNef protocol, based on the analysis of resting-state functional imaging data from a large cohort of depressed individuals, has been proposed to promote negative functional connectivity between the dorsolateral prefrontal cortex and the posterior cingulate cortex (DLPFC-PCC FC). This study aimed to assess the therapeutic efficacy and practicality of the protocol in a small sample of TRD patients. Of the six patients recruited, five completed the FCNef sessions. Depression and rumination scores significantly improved post-treatment, however, there were no significant changes in DLPFC-PCC FC. The study demonstrated efficacy of FCNef in ameliorating depressive symptoms, yet, it also indicated that the training itself may be burdensome for depressed patients, as evidenced by participants reporting fatigue (one of whom dropped out). Thus, a more efficient and less burdensome protocol is needed for future investigations and applications.

View Full Paper →

The Interplay of Environmental Exposures and Mental Health: Setting an Agenda

Reuben, Aaron, Manczak, Erika M., Cabrera, Laura Y., Alegria, Margarita, Bucher, Meghan L., Freeman, Emily C., Miller, Gary W., Solomon, Gina M., Perry, Melissa J. (2022) · Environmental Health Perspectives

Background: To date, health-effects research on environmental stressors has rarely focused on behavioral and mental health outcomes. That lack of research is beginning to change. Science and policy experts in the environmental and behavioral health sciences are coming together to explore converging evidence on the relationship—harmful or beneficial—between environmental factors and mental health. Objectives: To organize evidence and catalyze new findings, the National Academy of Sciences, Engineering, and Medicine (NASEM) hosted a workshop 2–3 February 2021 on the interplay of environmental exposures and mental health outcomes. Methods: This commentary provides a nonsystematic, expert-guided conceptual review and interdisciplinary perspective on the convergence of environmental and mental health, drawing from hypotheses, findings, and research gaps presented and discussed at the workshop. Featured is an overview of what is known about the intersection of the environment and mental health, focusing on the effects of neurotoxic pollutants, threats related to climate change, and the importance of health promoting environments, such as urban green spaces. Discussion: We describe what can be gained by bridging environmental and psychological research disciplines and present a synthesis of what is needed to advance interdisciplinary investigations. We also consider the implications of the current evidence for a) foundational knowledge of the etiology of mental health and illness, b) toxicant policy and regulation, c) definitions of climate adaptation and community resilience, d) interventions targeting marginalized communities, and e) the future of research training and funding. We include a call to action for environmental and mental health researchers, focusing on the environmental contributions to mental health to unlock primary prevention strategies at the population level and open equitable paths for preventing mental disorders and achieving optimal mental health for all. https://doi.org/10.1289/EHP9889

View Full Paper →

The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies

Vanhollebeke, Gert, De Smet, Stefanie, De Raedt, Rudi, Baeken, Chris, van Mierlo, Pieter, Vanderhasselt, Marie-Anne (2022) · Neurobiology of Stress

Whereas the link between psychosocial stress and health complications has long been established, the influence of psychosocial stress on brain activity is not yet completely understood. Electroencephalography (EEG) has been regularly employed to investigate the neural aspects of the psychosocial stress response, but these results have not yet been unified. Therefore, in this article, we systematically review the current EEG literature in which spectral analyses were employed to investigate the neural psychosocial stress response and interpret the results with regard to the three stress phases (anticipatory, reactive, and recovery) in which the response can be divided. Our results show that three EEG measures, alpha power, beta power and frontal alpha asymmetry (FAA), are commonly utilized and that alpha power consistently decreases, beta power shows a tendency to increase, and FAA varies inconsistently. We furthermore found that whereas changes in alpha power are independent of the stress phase, and changes in beta power show a relative stress phase independent trend, other EEG measures such as delta power, theta power, relative gamma and theta-alpha power ratio show less stress phase independent changes. Meta-analyses conducted on alpha power, beta power and FAA further revealed a significant effect size (hedge's g = 0.6; p = 0.001) for alpha power, but an insignificant effect size for beta power (hedge's g = -0.31; p = 0.29) and FAA (hedge's g = 0.01, p = 0.93). From our results, it can be concluded that psychosocial stress results in significant changes in some spectral EEG indices, but that more research is needed to further uncover the precise (temporal) mechanisms underlying these neural responses.

View Full Paper →

Functional and clinical outcomes of FMRI-based neurofeedback training in patients with alcohol dependence: a pilot study

Karch, Susanne, Krause, Daniela, Lehnert, Kevin, Konrad, Julia, Haller, Dinah, Rauchmann, Boris-Stephan, Maywald, Maximilian, Engelbregt, Hessel, Adorjan, Kristina, Koller, Gabriele, Reidler, Paul, Karali, Temmuz, Tschentscher, Nadja, Ertl-Wagner, Birgit, Pogarell, Oliver, Paolini, Marco, Keeser, Daniel (2022) · European Archives of Psychiatry and Clinical Neuroscience

Identifying treatment options for patients with alcohol dependence is challenging. This study investigates the application of real-time functional MRI (rtfMRI) neurofeedback (NF) to foster resistance towards craving-related neural activation in alcohol dependence. We report a double-blind, placebo-controlled rtfMRI study with three NF sessions using alcohol-associated cues as an add-on therapy to the standard treatment. Fifty-two patients (45 male; 7 female) diagnosed with alcohol dependence were recruited in Munich, Germany. RtfMRI data were acquired in three sessions and clinical abstinence was evaluated 3 months after the last NF session. Before the NF training, BOLD responses and clinical data did not differ between groups, apart from anger and impulsiveness. During NF training, BOLD responses of the active group were decreased in medial frontal areas/caudate nucleus, and increased, e.g. in the cuneus/precuneus and occipital cortex. Within the active group, the down-regulation of neuronal responses was more pronounced in patients who remained abstinent for at least 3 months after the intervention compared to patients with a relapse. As BOLD responses were comparable between groups before the NF training, functional variations during NF cannot be attributed to preexisting distinctions. We could not demonstrate that rtfMRI as an add-on treatment in patients with alcohol dependence leads to clinically superior abstinence for the active NF group after 3 months. However, the study provides evidence for a targeted modulation of addiction-associated brain responses in alcohol dependence using rtfMRI.

View Full Paper →

Case Report: Infra-Low-Frequency Neurofeedback for PTSD: A Therapist's Perspective

Spreyermann, Regula (2022) · Frontiers in Human Neuroscience

The practical use of a combination of trauma psychotherapy and neurofeedback [infra-low-frequency (ILF) neurofeedback and alpha-theta training] is described for the treatment of patients diagnosed with complex post-traumatic stress disorder (C-PTSD). The indication for this combined treatment is the persistence of symptoms of a hyper-aroused state, anxiety, and sleep disorders even with adequate trauma-focused psychotherapy and supportive medication, according to the Guidelines of the German Society of Psycho-Traumatology (DeGPT). Another indication for a supplementary treatment with neurofeedback is the persistence of dissociative symptoms. Last but not least, the neurofeedback treatment after a trauma-focused psychotherapy session helps to calm the trauma-related reactions and to process the memories. The process of the combined therapy is described and illustrated using two representative case reports. Overall, a rather satisfying result of this outpatient treatment program can be seen in the qualitative appraisal of 7 years of practical application.

View Full Paper →

16 Aberrant emotional memory encoding in a transdiagnostic sample of patients with intrusive memories

Smith, Alicia J., Bisby, James A., Dercon, Quentin, Bevan, Anna, Dalgleish, Tim, Hitchcock, Caitlin, Nord, Camilla (2022) · Journal of Neurology, Neurosurgery & Psychiatry

Emotion can affect the way in which experiences are stored in our memory. The dual representation account proposes that traumatic events may be encoded as fragmented sensory-perceptual details without a broader conceptual organisation. This can result in involuntary retrieval of perceptual information triggered by environmental cues without the associated context – a phenomenon referred to as intrusive memories.Currently, it is unknown whether individuals who experience intrusive memories have an underlying vulnerability to aberrant memory encoding, which may lead to the onset or maintenance of symptoms.In Experiment 1, we examined memory recall for neutral and negative images in a transdiagnostic sample of patients with intrusive memories (N = 36), compared to healthy controls (N = 44). Clinical diagnoses in the patient sample included Post-Traumatic Stress Disorder, Major Depressive Disorder, Social Anxiety Disorder, Generalised Anxiety Disorder, Panic Disorder and Other Specified Feeding or Eating Disorders. We excluded participants currently taking psychotropic medication. At encoding, participants viewed neutral, negative and mixed valence image pairs. In the test phase, participants were presented with cues and, if recognised, were asked to recall the associated image. We found a significant group effect, with patients demonstrating impaired item memory for negative images [F(1,280) = 4.435, p = 0.036], relative to healthy controls. This group difference might suggest that individuals with intrusive memories experienced greater sensitivity to negative stimuli, leading to disruptions in memory encoding. Recent work highlights attention maintenance on threat and high levels of threat-related emotional arousal in anxiety- and fear-related disorders which may be one factor driving the disruption to item memory observed in our clinical population.For Experiment 2, in a separate sample of healthy participants (N = 18) we measured eye-tracking behaviour during the encoding phase of the same task. Healthy participants showed greater item memory [F(3, 136 = 2.893, p = 0.0377] and avoidance of fixation [F(1, 110) = 4.898, p = 0.029] on highly arousing, negative stimuli relative to neutral. This might suggest that a shift in attention away from negative stimuli prevents item memory impairments for emotional information.Our future work will identify biological factors driving attentional biases and higher emotional arousal in clinical populations.

View Full Paper →

Infra-low frequency neurofeedback in persistent postural-perceptual dizziness—Case report

Sasu, Roxana (2022) · Frontiers in Human Neuroscience

Persistent Postural-Perceptual Dizziness, also known as PPPD or 3PD, is a chronic functional vestibular disorder characterized by persistent sensation of rocking or swaying unsteadiness and/ or non-spinning dizziness without vertigo lasting at least 3 months. Symptoms typically worsen with upright posture (like standing or sitting upright), head or body motion and exposure to busy or visually rich environments. The article describes the application of Infra-Low Frequency Neurofeedback (ILF NF) over 32 sessions on an unmedicated individual with symptoms related to PPPD that were still present 3 years after the initial diagnosis. Along with significant reduction in those symptoms, other accompanying symptoms (like anxiety, intrusive violent thoughts, suicidal thoughts) were markedly improved with ILF NFB. Consistent symptom tracking from session to session, as well as before and after CPT data were used to document reported changes with ILF NF.

View Full Paper →

New treatment strategy for chronic low back pain with alpha wave neurofeedback

Shimizu, Keisuke, Inage, Kazuhide, Morita, Mitsuo, Kuroiwa, Ryota, Chikubu, Hiroto, Hasegawa, Tadashi, Nozaki-Taguchi, Natsuko, Orita, Sumihisa, Shiga, Yasuhiro, Eguchi, Yawara, Takabatake, Kazuhiko, Ohtori, Seiji (2022) · Scientific Reports

The lifetime prevalence of low back pain is 83%. Since there is a lack of evidence for therapeutic effect by cognitive behavioral therapy (CBT) or physical therapy (PT), it is necessary to develop objective physiological indexes and effective treatments. We conducted a prospective longitudinal study to evaluate the treatment effects of CBT, PT, and neurofeedback training (NFT) during alpha wave NFT. The early-chronic cases within 1 year and late-chronic cases over 1 year after the diagnosis of chronic low back pain were classified into six groups: Controls, CBTs, PTs, NFTs, CBT-NFTs, PT-NFTs. We evaluated the difference in EEG, psychosocial factors, scores of low back pain before/after the intervention. Therapeutic effect was clearly more effective in the early-chronic cases. We found that the intensity of alpha waves increased significantly after therapeutic intervention in the NFT groups, but did not have the main effect of reducing low back pain; the interaction between CBT and NFT reduced low back pain. Factors that enhance therapeutic effect are early intervention, increased alpha waves, and self-efficacy due to parallel implementation of CBT/PT and NFT. A treatment protocol in which alpha wave neurofeedback training is subsidiarily used with CBT or PT should be developed in the future.

View Full Paper →

Interventions for perceptual disorders following stroke

Hazelton, Christine, Thomson, Katie, Todhunter-Brown, Alex, Campbell, Pauline, Chung, Charlie Sy, Dorris, Liam, Gillespie, David C., Hunter, Susan M., McGill, Kris, Nicolson, Donald J., Williams, Linda J., Brady, Marian C. (2022) · The Cochrane Database of Systematic Reviews

BACKGROUND: Perception is the ability to understand information from our senses. It allows us to experience and meaningfully interact with our environment. A stroke may impair perception in up to 70% of stroke survivors, leading to distress, increased dependence on others, and poorer quality of life. Interventions to address perceptual disorders may include assessment and screening, rehabilitation, non-invasive brain stimulation, pharmacological and surgical approaches. OBJECTIVES: To assess the effectiveness of interventions aimed at perceptual disorders after stroke compared to no intervention or control (placebo, standard care, attention control), on measures of performance in activities of daily living.  SEARCH METHODS: We searched the trials registers of the Cochrane Stroke Group, CENTRAL, MEDLINE, Embase, and three other databases to August 2021. We also searched trials and research registers, reference lists of studies, handsearched journals, and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of adult stroke survivors with perceptual disorders. We defined perception as the specific mental functions of recognising and interpreting sensory stimuli and included hearing, taste, touch, smell, somatosensation, and vision. Our definition of perception excluded visual field deficits, neglect/inattention, and pain. DATA COLLECTION AND ANALYSIS: One review author assessed titles, with two review authors independently screening abstracts and full-text articles for eligibility. One review author extracted, appraised, and entered data, which were checked by a second author. We assessed risk of bias (ROB) using the ROB-1 tool, and quality of evidence using GRADE.  A stakeholder group, comprising stroke survivors, carers, and healthcare professionals, was involved in this review update. MAIN RESULTS: We identified 18 eligible RCTs involving 541 participants. The trials addressed touch (three trials, 70 participants), somatosensory (seven trials, 196 participants) and visual perception disorders (seven trials, 225 participants), with one (50 participants) exploring mixed touch-somatosensory disorders. None addressed stroke-related hearing, taste, or smell perception disorders. All but one examined the effectiveness of rehabilitation interventions; the exception evaluated non-invasive brain stimulation. For our main comparison of active intervention versus no treatment or control, one trial reported our primary outcome of performance in activities of daily living (ADL):  Somatosensory disorders: one trial (24 participants) compared an intervention with a control intervention and reported an ADL measure.  Touch perception disorder: no trials measuring ADL compared an intervention with no treatment or with a control intervention.  Visual perception disorders: no trials measuring ADL compared an intervention with no treatment or control.  In addition, six trials reported ADL outcomes in a comparison of active intervention versus active intervention, relating to somatosensation (three trials), touch (one trial) and vision (two trials).   AUTHORS' CONCLUSIONS: Following a detailed, systematic search, we identified limited RCT evidence of the effectiveness of interventions for perceptual disorders following stroke. There is insufficient evidence to support or refute the suggestion that perceptual interventions are effective. More high-quality trials of interventions for perceptual disorders in stroke are needed. They should recruit sufficient participant numbers, include a 'usual care' comparison, and measure longer-term functional outcomes, at time points beyond the initial intervention period. People with impaired perception following a stroke should continue to receive neurorehabilitation according to clinical guidelines.

View Full Paper →

The effect of mirror therapy can be improved by simultaneous robotic assistance

Schrader, Mareike, Sterr, Annette, Kettlitz, Robyn, Wohlmeiner, Anika, Buschfort, Rüdiger, Dohle, Christian, Bamborschke, Stephan (2022) · Restorative Neurology and Neuroscience

BACKGROUND: Standard mirror therapy (MT) is a well-established therapy regime for severe arm paresis after acquired brain injury. Bilateral robot-assisted mirror therapy (RMT) could be a solution to provide visual and somatosensory feedback simultaneously. OBJECTIVE: The study compares the treatment effects of MT with a version of robot-assisted MT where the affected arm movement was delivered through a robotic glove (RMT). METHODS: This is a parallel, randomized trial, including patients with severe arm paresis after stroke or traumatic brain injury with a Fugl-Meyer subscore hand/finger < 4. Participants received either RMT or MT in individual 30 minute sessions (15 sessions within 5 weeks). Main outcome parameter was the improvement in the Fugl-Meyer Assessment upper extremity (FMA-UE) motor score. Additionally, the Motricity Index (MI) and the FMA-UE sensation test as well as a pain scale were recorded. Furthermore, patients' and therapists' experiences with RMT were captured through qualitative tools. RESULTS: 24 patients completed the study. Comparison of the FMA-UE motor score difference values between the two groups revealed a significantly greater therapy effect in the RMT group than the MT group (p = 0.006). There were no significant differences for the MI (p = 0.108), the FMA-UE surface sensibility subscore (p = 0.403) as well as the FMA-UE position sense subscore (p = 0.192). In both groups the levels of pain remained stable throughout the intervention. No other adverse effects were observed. The RMT training was well accepted by patients and therapists. CONCLUSIONS: The study provides evidence that bilateral RMT achieves greater treatment benefit on motor function than conventional MT. The use of robotics seems to be a good method to implement passive co-movement in clinical practice. Our study further demonstrates that this form of training can feasibly and effectively be delivered in an inpatient setting.

View Full Paper →

What the hippocampus tells the HPA axis: Hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF+ PVN neurons

Cole, Anthony B., Montgomery, Kristen, Bale, Tracy L., Thompson, Scott M. (2022) · Neurobiology of Stress

The hippocampus exerts inhibitory feedback on the release of glucocorticoids. Because the major hippocampal efferent projections are excitatory, it has been hypothesized that this inhibition is mediated by populations of inhibitory neurons in the hypothalamus or elsewhere. These regions would be excited by hippocampal efferents and project to corticotropin-releasing factor (CRF) cells in the paraventricular nucleus of the hypothalamus (PVN). A direct demonstration of the synaptic responses elicited by hippocampal outputs in PVN cells or upstream GABAergic interneurons has not been provided previously. Here, we used viral vectors to express channelrhodopsin (ChR) and enhanced yellow fluorescent protein (EYFP) in pyramidal cells in the ventral hippocampus (vHip) in mice expressing tdTomato in GABA- or CRF-expressing neurons. We observed dense innervation of the bed nucleus of the stria terminalis (BNST) by labeled vHip axons and sparse labeling within the PVN. Using whole-cell voltage-clamp recording in parasagittal brain slices containing the BNST and PVN, photostimulation of vHip terminals elicited rapid excitatory postsynaptic currents (EPSCs) and longer-latency inhibitory postsynaptic currents (IPSCs) in both CRF+ and GAD + cells. The ratio of synaptic excitation and inhibition was maintained in CRF + cells during 20 Hz stimulus trains. Photostimulation of hippocampal afferents to the BNST and PVN in vivo inhibited the rise in blood glucocorticoid levels produced by acute restraint stress. We thus provide functional evidence suggesting that hippocampal output to the BNST contributes to a net inhibition of the hypothalamic-pituitary axis, providing further mechanistic insights into this process using methods with enhanced spatial and temporal resolution.

View Full Paper →

Neurofeedback Therapy for Sensory Over-Responsiveness-A Feasibility Study

Hamed, Ruba, Mizrachi, Limor, Granovsky, Yelena, Issachar, Gil, Yuval-Greenberg, Shlomit, Bar-Shalita, Tami (2022) · Sensors (Basel, Switzerland)

Background: Difficulty in modulating multisensory input, specifically the sensory over-responsive (SOR) type, is linked to pain hypersensitivity and anxiety, impacting daily function and quality of life in children and adults. Reduced cortical activity recorded under resting state has been reported, suggestive of neuromodulation as a potential therapeutic modality. This feasibility study aimed to explore neurofeedback intervention in SOR. Methods: Healthy women with SOR (n = 10) underwent an experimental feasibility study comprising four measurement time points (T1—baseline; T2—preintervention; T3—postintervention; T4—follow-up). Outcome measures included resting-state EEG recording, in addition to behavioral assessments of life satisfaction, attaining functional goals, pain sensitivity, and anxiety. Intervention targeted the upregulation of alpha oscillatory power over ten sessions. Results: No changes were detected in all measures between T1 and T2. Exploring the changes in brain activity between T2 and T4 revealed power enhancement in delta, theta, beta, and gamma oscillatory bands, detected in the frontal region (p = 0.03−<0.001; Cohen’s d = 0.637−1.126) but not in alpha oscillations. Furthermore, a large effect was found in enhancing life satisfaction and goal attainment (Cohen’s d = 1.18; 1.04, respectively), and reduced pain sensitivity and anxiety trait (Cohen’s d = 0.70). Conclusion: This is the first study demonstrating the feasibility of neurofeedback intervention in SOR.

View Full Paper →

Evaluation of Cognitive Behavioral Therapy on Improving Pain, Fear Avoidance, and Self-Efficacy in Patients with Chronic Low Back Pain: A Systematic Review and Meta-Analysis

Yang, Jiajia, Lo, Wai Leung Ambrose, Zheng, Fuming, Cheng, Xue, Yu, Qiuhua, Wang, Chuhuai (2022) · Pain Research & Management

BACKGROUND: Cognitive-behavioral therapy (CBT) is commonly adopted in pain management programs for patients with chronic low back pain (CLBP). However, the benefits of CBT are still unclear. OBJECTIVES: This review investigated the effectiveness of CBT on pain, disability, fear avoidance, and self-efficacy in patients with CLBP. METHODS: Databases including PubMed, EMBASE, Web of Science, Cochrane Library, and PsycINFO were searched. RCTs examining the effects of CBT in adults with CLBP were included. The data about the outcome of pain, disability, fear avoidance, and self-efficacy were retained. Subgroup analysis about the effects of CBT on posttreatment was conducted according to CBT versus control groups (waiting list/usual care, active therapy) and concurrent CBT versus CBT alone. A random-effects model was used, and statistical heterogeneity was explored. RESULTS: 22 articles were included. The results indicated that CBT was superior to other therapies in improving disability (SMD -0.44, 95% CI -0.71 to -0.17, P < 0.05), pain (SMD -0.32, 95% CI -0.57 to -0.06, P < 0.05), fear avoidance (SMD -1.24, 95% CI -2.25 to -0.23, P < 0.05), and self-efficacy (SMD 0.27, 95% CI 0.15 to 0.40, P < 0.05) after intervention. No different effect was observed between CBT and other therapies in all the follow-up terms. Subgroup analysis suggested that CBT in conjunction with other interventions was in favor of other interventions alone to reduce pain and disability (P < 0.05). CONCLUSION: CBT is beneficial in patients with CLBP for improving pain, disability, fear avoidance, and self-efficacy in CLBP patients. Further study is recommended to investigate the long-term benefits of CBT. This meta-analysis is registered with Prospero (registration number CRD42021224837).

View Full Paper →

The importance of self-efficacy and negative affect for neurofeedback success for central neuropathic pain after a spinal cord injury

Anil, Krithika, Demain, Sara, Burridge, Jane, Simpson, David, Taylor, Julian, Cotter, Imogen, Vuckovic, Aleksandra (2022) · Scientific Reports

EEG-based neurofeedback uses mental behaviours (MB) to enable voluntary self-modulation of brain activity, and has potential to relieve central neuropathic pain (CNP) after a spinal cord injury (SCI). This study aimed to understand neurofeedback learning and the relationship between MB and neurofeedback success. Twenty-five non-CNP participants and ten CNP participants received neurofeedback training (reinforcing 9-12 Hz; suppressing 4-8 Hz and 20-30 Hz) on four visits. Participants were interviewed about the MB they used after each visit. Questionnaires examined the following factors: self-efficacy, locus of control, motivation, and workload of neurofeedback. MB were grouped into mental strategies (a goal-directed mental action) and affect (emotional experience during neurofeedback). Successful non-CNP participants significantly used more imagination-related MS and reported more negative affect compared to successful CNP participants. However, no mental strategy was clearly associated with neurofeedback success. There was some association between the lack of success and negative affect. Self-efficacy was moderately correlated with neurofeedback success (r = < 0.587, p = < 0.020), whereas locus of control, motivation, and workload had low, non-significant correlations (r < 0.300, p > 0.05). Affect may be more important than mental strategies for a successful neurofeedback performance. Self-efficacy was associated with neurofeedback success, suggesting that increasing confidence in one's neurofeedback abilities may improve neurofeedback performance.

View Full Paper →

Sensorimotor rhythm neurofeedback training relieves anxiety in healthy people

Liu, Shuang, Hao, Xinyu, Liu, Xiaoya, He, Yuchen, Zhang, Ludan, An, Xingwei, Song, Xizi, Ming, Dong (2022) · Cognitive Neurodynamics

Timely relief of anxiety in healthy people is important, but there is little research on this topic at present. Neurofeedback training allows subjects to regulate their specific brain activities autonomously and thus alter their corresponding cognitive functions. Inattention is a significant cognitive deficit in patients with anxiety. Sensorimotor rhythm (SMR) was reported to be closely related to attention. In this study, trainability, frequency specificity, and brain-behavior relationships were utilized to verify the validity of a relative SMR power protocol. An EEG neurofeedback training system was developed for alleviating anxiety levels in healthy people. The EEG data were collected from 33 subjects during SMR up-training sessions. Subjects attended six times neurofeedback training for about 2 weeks. The feedback value of the neurofeedback group was the relative SMR power at the feedback electrode (electrode C3), while the feedback values for the control group were pseudorandom numbers. The trainability index revealed that the learning trend showed an increase in SMR power activity at the C3 electrode, confirming effects across training. The frequency specificity index revealed only that SMR band activity increased significantly in the neurofeedback group. The brain-behavior relationships index revealed that increased SMR activity correlated negatively with the severity of anxiety. This study indicates that neurofeedback training using a relative SMR power protocol, based on activity at the C3 electrode, could relieve anxiety levels for healthy people and increase the SMR power. Preliminary studies support the feasibility and efficacy of the relative SMR power protocol for healthy people with anxiety.

View Full Paper →

Infra-low frequency neurofeedback in application to Tourette syndrome and other tic disorders: A clinical case series

Solberg, Bodil, Solberg, Erlend (2022) · Frontiers in Human Neuroscience

We describe our clinical experience in treating patients with Tourette syndrome and other tic disorders using infra-low frequency neurofeedback (ILF NF), often in conjunction with cognitive behavior therapy. Following a narrative description of our approach, we present outcome data for 100 successive cases. Many of the children and adolescents that we have treated since 2005 did not derive sufficient benefit from standard treatment for Tourette syndrome and other tic disorders. In our clinical experience, based on extensive before- and after- testing and symptom tracking, this patient group derived significant additive benefit from complementary neurofeedback treatment. The majority of trainees attained a higher level of functioning and were able to live up to their potential in a way they were not able to prior to neurofeedback treatment.

View Full Paper →

Self-Directed Neurofeedback Treatment for Subjective Tinnitus Patients Evaluated by Multimodal Functional Imaging

Ma, Xiaoyan, Wang, Fangyuan, Zhang, Chi, Shen, Weidong, Yang, Shiming (2022) · Neural Plasticity

Neurofeedback (NFB) is a relatively novel approach to the treatment of tinnitus, and prior studies have demonstrated that the increases in alpha activity rather than reduced delta power seem to drive these NFB-related improvements in tinnitus symptoms. The present study was therefore designed to explore whether the implementation of an alpha training protocol with a portable neurofeedback apparatus would achieve improvements in tinnitus patient symptoms. In this study, 38 tinnitus patients underwent NFB training while 18 were enrolled in a control group. The study was single-blinded such that only participants were not aware of their group assignments. Those in the NFB group underwent 15 NFB training sessions over 5 weeks, in addition to pre- and posttraining tests including the Tinnitus Handicap Inventory (THI), Tinnitus Handicap Questionnaire (THQ), visual analog scales (VAS), electroencephalography (EEG), and functional magnetic resonance imaging (fMRI). Our result find that when the THI, THQ, and VAS scores of patients in the two groups were assessed after a 5-week training period, these scores were unchanged in control patients whereas they had significantly improved in the NFB group patients. EEG analyses revealed that the alpha band was increased in the occipital lobe following NFB treatment, while fMRI indicated an increase in regional homogeneity (ReHo) in the right frontal lobe of patients in the NFB group after treatment that was negatively correlated with THI and VAS scores. The results of this analysis indicate that alpha NFB training can be effectively used to reduce tinnitus-related distress and sound perception in patients.

View Full Paper →

A preregistered, systematic review considering mindfulness-based interventions and neurofeedback for targeting affective and cognitive processes in behavioral addictions.

Brandtner, Annika, Antons, Stephanie, King, Daniel L., Potenza, Marc N., Tang, Yi-Yuan, Blycker, Gretchen R., Brand, Matthias, Liebherr, Magnus (2022) · Clinical Psychology: Science and Practice

Psychological core processes that underpin disorders due to addictive behaviors, including craving, inhibitory control, maladaptive decision-making, and cognitive biases, are important factors to target and modify in interventions. Mindfulness-based and neurofeedback techniques have been particularly promising interventions. The aim of the present systematic review (PROSPERO ID: CRD42020200113) was to evaluate the research evidence on their effectiveness for behavioral addictions. Empirical intervention studies in the realm of nonsubstance addictive behaviors fulfilled the inclusion criteria, which led to 15 studies and 297 participants being included in this review among PubMed, Scopus, and Web of Knowledge. Results suggest that mindfulness-based interventions are effective in reducing mental distress and craving reactions. Reductions in craving levels were reported in four of six studies with biggest effects for mindfulness-based cognitive therapy and mindfulness-enhanced cognitive behavioral therapy. Successful reductions in mental distress were identified in five of seven studies that used diverse mindfulness-based techniques. However, no more than one study on mindfulness-based interventions reporting improvements in self-control, inhibitory control, maladaptive decision-making, and cognitive biases could be identified. No research could be found on neurofeedback. This review highlights the potential of mindfulness interventions for these disorders, and the specific mechanisms of therapeutic change warrant further investigation.

View Full Paper →

Effects of Electroencephalogram Biofeedback on Emotion Regulation and Brain Homeostasis of Late Adolescents in the COVID-19 Pandemic

Park, Wanju, Cho, Mina, Park, Shinjeong (2022) · Journal of Korean Academy of Nursing

PURPOSE: The purpose of this study was to examine the effects of electroencephalogram (EEG) biofeedback training for emotion regulation and brain homeostasis on anxiety about COVID-19 infection, impulsivity, anger rumination, meta-mood, and self-regulation ability of late adolescents in the prolonged COVID-19 pandemic situation. METHODS: A non-equivalent control group pretest-posttest design was used. The participants included 55 late adolescents in the experimental and control groups. The variables were evaluated using quantitative EEG at pre-post time points in the experimental group. The experimental groups received 10 sessions using the three-band protocol for five weeks. The collected data were analyzed using the Shapiro-Wilk test, Wilcoxon rank sum test, Wilcoxon signed-rank test, t-test and paired t-test using the SAS 9.3 program. The collected EEG data used a frequency series power spectrum analysis method through fast Fourier transform. RESULTS: Significant differences in emotion regulation between the two groups were observed in the anxiety about COVID-19 infection (W = 585.50, p = .002), mood repair of meta-mood (W = 889.50, p = .024), self-regulation ability (t = -5.02, p < .001), self-regulation mode (t = -4.74, p < .001), and volitional inhibition mode (t = -2.61, p = .012). Neurofeedback training for brain homeostasis was effected on enhanced sensory-motor rhythm (S = 177.00, p < .001) and inhibited theta (S = -166.00, p < .001). CONCLUSION: The results demonstrate the potential of EEG biofeedback training as an independent nursing intervention that can markedly improve anxiety, mood-repair, and self-regulation ability for emotional distress during the COVID-19 pandemic.

View Full Paper →

Differential mechanisms of posterior cingulate cortex downregulation and symptom decreases in posttraumatic stress disorder and healthy individuals using real-time fMRI neurofeedback

Nicholson, Andrew A., Rabellino, Daniela, Densmore, Maria, Frewen, Paul A., Steryl, David, Scharnowski, Frank, Théberge, Jean, Neufeld, Richard W. J., Schmahl, Christian, Jetly, Rakesh, Lanius, Ruth A. (2022) · Brain and Behavior

BACKGROUND: Intrinsic connectivity networks, including the default mode network (DMN), are frequently disrupted in individuals with posttraumatic stress disorder (PTSD). The posterior cingulate cortex (PCC) is the main hub of the posterior DMN, where the therapeutic regulation of this region with real-time fMRI neurofeedback (NFB) has yet to be explored. METHODS: We investigated PCC downregulation while processing trauma/stressful words over 3 NFB training runs and a transfer run without NFB (total n = 29, PTSD n = 14, healthy controls n = 15). We also examined the predictive accuracy of machine learning models in classifying PTSD versus healthy controls during NFB training. RESULTS: Both the PTSD and healthy control groups demonstrated reduced reliving symptoms in response to trauma/stressful stimuli, where the PTSD group additionally showed reduced symptoms of distress. We found that both groups were able to downregulate the PCC with similar success over NFB training and in the transfer run, although downregulation was associated with unique within-group decreases in activation within the bilateral dmPFC, bilateral postcentral gyrus, right amygdala/hippocampus, cingulate cortex, and bilateral temporal pole/gyri. By contrast, downregulation was associated with increased activation in the right dlPFC among healthy controls as compared to PTSD. During PCC downregulation, right dlPFC activation was negatively correlated to PTSD symptom severity scores and difficulties in emotion regulation. Finally, machine learning algorithms were able to classify PTSD versus healthy participants based on brain activation during NFB training with 80% accuracy. CONCLUSIONS: This is the first study to investigate PCC downregulation with real-time fMRI NFB in both PTSD and healthy controls. Our results reveal acute decreases in symptoms over training and provide converging evidence for EEG-NFB targeting brain networks linked to the PCC.

View Full Paper →

Changes in EEG Recordings in COVID-19 Patients as a Basis for More Accurate QEEG Diagnostics and EEG Neurofeedback Therapy: A Systematic Review

Kopańska, Marta, Banaś-Ząbczyk, Agnieszka, Łagowska, Anna, Kuduk, Barbara, Szczygielski, Jacek (2021) · Journal of Clinical Medicine

Introduction and purpose: The SARS-CoV-2 virus is able to cause abnormalities in the functioning of the nervous system and induce neurological symptoms with the features of encephalopathy, disturbances of consciousness and concentration and a reduced ability to sense taste and smell as well as headaches. One of the methods of detecting these types of changes in COVID-19 patients is an electroencephalogram (EEG) test, which allows information to be obtained about the functioning of the brain as well as diagnosing diseases and predicting their consequences. The aim of the study was to review the latest research on changes in EEG in patients with COVID-19 as a basis for further quantitative electroencephalogram (QEEG) diagnostics and EEG neurofeedback training. Description of the state of knowledge: Based on the available scientific literature using the PubMed database from 2020 and early 2021 regarding changes in the EEG records in patients with COVID-19, 17 publications were included in the analysis. In patients who underwent an EEG test, changes in the frontal area were observed. A few patients were not found to be responsive to external stimuli. Additionally, a previously non-emerging, uncommon pattern in the form of continuous, slightly asymmetric, monomorphic, biphasic and slow delta waves occurred. Conclusion: The results of this analysis clearly indicate that the SARS-CoV-2 virus causes changes in the nervous system that can be manifested and detected in the EEG record. The small number of available articles, the small number of research groups and the lack of control groups suggest the need for further research regarding the short and long term neurological effects of the SARS-CoV-2 virus and the need for unquestionable confirmation that observed changes were caused by the virus per se and did not occur before. The presented studies described non-specific patterns appearing in encephalograms in patients with COVID-19. These observations are the basis for more accurate QEEG diagnostics and EEG neurofeedback training.

View Full Paper →

Neurofeedback with low-cost, wearable electroencephalography (EEG) reduces symptoms in chronic Post-Traumatic Stress Disorder

du Bois, N., Bigirimana, A. D., Korik, A., Kéthina, L. Gaju, Rutembesa, E., Mutabaruka, J., Mutesa, L., Prasad, G., Jansen, S., Coyle, D. H. (2021) · Journal of Affective Disorders

BACKGROUND: The study examines the effectiveness of both neurofeedback and motor-imagery brain-computer interface (BCI) training, which promotes self-regulation of brain activity, using low-cost electroencephalography (EEG)-based wearable neurotechnology outside a clinical setting, as a potential treatment for post-traumatic stress disorder (PTSD) in Rwanda. METHODS: Participants received training/treatment sessions along with a pre- and post- intervention clinical assessment, (N = 29; control n = 9, neurofeedback (NF, 7 sessions) n = 10, and motor-imagery (MI, 6 sessions) n = 10). Feedback was presented visually via a videogame. Participants were asked to regulate (NF) or intentionally modulate (MI) brain activity to affect/control the game. RESULTS: The NF group demonstrated an increase in resting-state alpha 8-12 Hz bandpower following individual training sessions, termed alpha 'rebound' (Pz channel, p = 0.025, all channels, p = 0.024), consistent with previous research findings. This alpha 'rebound', unobserved in the MI group, produced a clinically relevant reduction in symptom severity in NF group, as revealed in three of seven clinical outcome measures: PCL-5 (p = 0.005), PTSD screen (p = 0.005), and HTQ (p = 0.005). LIMITATIONS: Data collection took place in environments that posed difficulties in controlling environmental factors. Nevertheless, this limitation improves ecological validity, as neurotechnology treatments must be deployable outside controlled environments, to be a feasible technological treatment. CONCLUSIONS: The study produced the first evidence to support a low-cost, neurotechnological solution for neurofeedback as an effective treatment of PTSD for victims of acute trauma in conflict zones in a developing country.

View Full Paper →

Self-regulation of stress-related large-scale brain network balance using real-time fMRI neurofeedback

Krause, Florian, Kogias, Nikos, Krentz, Martin, Lührs, Michael, Goebel, Rainer, Hermans, Erno J. (2021) · NeuroImage

It has recently been shown that acute stress affects the allocation of neural resources between large-scale brain networks, and the balance between the executive control network and the salience network in particular. Maladaptation of this dynamic resource reallocation process is thought to play a major role in stress-related psychopathology, suggesting that stress resilience may be determined by the retained ability to adaptively reallocate neural resources between these two networks. Actively training this ability could hence be a potentially promising way to increase resilience in individuals at risk for developing stress-related symptomatology. Using real-time functional Magnetic Resonance Imaging, the current study investigated whether individuals can learn to self-regulate stress-related large-scale network balance. Participants were engaged in a bidirectional and implicit real-time fMRI neurofeedback paradigm in which they were intermittently provided with a visual representation of the difference signal between the average activation of the salience and executive control networks, and tasked with attempting to self-regulate this signal. Our results show that, given feedback about their performance over three training sessions, participants were able to (1) learn strategies to differentially control the balance between SN and ECN activation on demand, as well as (2) successfully transfer this newly learned skill to a situation where they (a) did not receive any feedback anymore, and (b) were exposed to an acute stressor in form of the prospect of a mild electric stimulation. The current study hence constitutes an important first successful demonstration of neurofeedback training based on stress-related large-scale network balance - a novel approach that has the potential to train control over the central response to stressors in real-life and could build the foundation for future clinical interventions that aim at increasing resilience.

View Full Paper →

Practitioner's review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions

Popow, Christian, Ohmann, Susanne, Plener, Paul (2021) · Neuropsychiatrie: Klinik, Diagnostik, Therapie Und Rehabilitation: Organ Der Gesellschaft Osterreichischer Nervenarzte Und Psychiater

Alleviating the multiple problems of children with autism spectrum disorder (ASD) and its comorbid conditions presents major challenges for the affected children, parents, and therapists. Because of a complex psychopathology, structured therapy and parent training are not always sufficient, especially for those patients with intellectual disability (ID) and multiple comorbidities. Moreover, structured therapy is not available for a large number of patients, and pharmacological support is often needed, especially in those children with additional attention deficit/hyperactivity and oppositional defiant, conduct, and sleep disorders.

View Full Paper →

Brain circuits for pain and its treatment

Mercer Lindsay, Nicole, Chen, Chong, Gilam, Gadi, Mackey, Sean, Scherrer, Grégory (2021) · Science Translational Medicine

Pain is a multidimensional experience with sensory-discriminative, affective-motivational, and cognitive-evaluative components. Pain aversiveness is one principal cause of suffering for patients with chronic pain, motivating research and drug development efforts to investigate and modulate neural activity in the brain’s circuits encoding pain unpleasantness. Here, we review progress in understanding the organization of emotion, motivation, cognition, and descending modulation circuits for pain perception. We describe the molecularly defined neuron types that collectively shape pain multidimensionality and its aversive quality. We also review how pharmacological, stimulation, neurofeedback, surgical, and cognitive-behavioral interventions alter activity in these circuits to relieve chronic pain.

View Full Paper →

EEG Neurofeedback for Anxiety Disorders and Post-Traumatic Stress Disorders: A Blueprint for a Promising Brain-Based Therapy

Micoulaud-Franchi, J. A., Jeunet, C., Pelissolo, A., Ros, T. (2021) · Current Psychiatry Reports

PURPOSE OF REVIEW: This review provides an overview of current knowledge and understanding of EEG neurofeedback for anxiety disorders and post-traumatic stress disorders. RECENT FINDINGS: The manifestations of anxiety disorders and post-traumatic stress disorders (PTSD) are associated with dysfunctions of neurophysiological stress axes and brain arousal circuits, which are important dimensions of the research domain criteria (RDoC). Even if the pathophysiology of these disorders is complex, one of its defining signatures is behavioral and physiological over-arousal. Interestingly, arousal-related brain activity can be modulated by electroencephalogram-based neurofeedback (EEG NF), a non-pharmacological and non-invasive method that involves neurocognitive training through a brain-computer interface (BCI). EEG NF is characterized by a simultaneous learning process where both patient and computer are involved in modifying neuronal activity or connectivity, thereby improving associated symptoms of anxiety and/or over-arousal. Positive effects of EEG NF have been described for both anxiety disorders and PTSD, yet due to a number of methodological issues, it remains unclear whether symptom improvement is the direct result of neurophysiological changes targeted by EEG NF. Thus, in this work we sought to bridge current knowledge on brain mechanisms of arousal with past and present EEG NF therapies for anxiety and PTSD. In a nutshell, we discuss the neurophysiological mechanisms underlying the effects of EEG NF in anxiety disorder and PTSD, the methodological strengths/weaknesses of existing EEG NF randomized controlled trials for these disorders, and the neuropsychological factors that may impact NF training success.

View Full Paper →

Effectiveness, Cost-Utility, and Safety of Neurofeedback Self-Regulating Training in Patients with Post-Traumatic Stress Disorder: A Randomized Controlled Trial

Leem, Jungtae, Cheong, Moon Joo, Lee, Hyeryun, Cho, Eun, Lee, So Young, Kim, Geun-Woo, Kang, Hyung Won (2021) · Healthcare

Post-traumatic stress disorder (PTSD) is characterized by neurophysiological and psycho-emotional problems after exposure to trauma. Several pharmacological and psychotherapy limitations, such as adverse events and low adherence, increase the need for alternative therapeutic options. Neurofeedback is widely used for PTSD management. However, evidence of its clinical efficacy is lacking. We conducted a randomized, waitlist-controlled, assessor-blinded clinical trial to assess the effectiveness, cost-utility, and safety of 16 sessions of neurofeedback on people with PTSD for eight weeks. Eleven participants were allocated to each group. One and two subjects dropped out from the neurofeedback and control groups, respectively. The primary outcome was PTSD symptom change evaluated using the PTSD Checklist-5 (PCL-5-K). The PCL-5-K levels improved more in the neurofeedback group (44.3 ± 10.8 to 19.4 ± 7.75) than in the control group (35.1 ± 18.5 to 31.0 ± 14.92). The change value was significantly improved in the neurofeedback group (24.90 ± 13.13 vs. 4.11 ± 9.03). Secondary outcomes such as anxiety, depression, insomnia, and quality of life were also improved. In an economic analysis using EuroQol-5D, the incremental cost-per-quality-adjusted life-year was approximately $15,600, indicating acceptable cost-utility. There were no adverse events in either group. In conclusion, neurofeedback might be a useful, cost-effective, and safe intervention for PTSD management.

View Full Paper →

Efficacy Evaluation of Neurofeedback-Based Anxiety Relief

Chen, Chao, Xiao, Xiaolin, Belkacem, Abdelkader Nasreddine, Lu, Lin, Wang, Xin, Yi, Weibo, Li, Penghai, Wang, Changming, Sha, Sha, Zhao, Xixi, Ming, Dong (2021) · Frontiers in Neuroscience

Anxiety disorder is a mental illness that involves extreme fear or worry, which can alter the balance of chemicals in the brain. This change and evaluation of anxiety state are accompanied by a comprehensive treatment procedure. It is well-known that the treatment of anxiety is chiefly based on psychotherapy and drug therapy, and there is no objective standard evaluation. In this paper, the proposed method focuses on examining neural changes to explore the effect of mindfulness regulation in accordance with neurofeedback in patients with anxiety. We designed a closed neurofeedback experiment that includes three stages to adjust the psychological state of the subjects. A total of 34 subjects, 17 with anxiety disorder and 17 healthy, participated in this experiment. Through the three stages of the experiment, electroencephalography (EEG) resting state signal and mindfulness-based EEG signal were recorded. Power spectral density was selected as the evaluation index through the regulation of neurofeedback mindfulness, and repeated analysis of variance (ANOVA) method was used for statistical analysis. The findings of this study reveal that the proposed method has a positive effect on both types of subjects. After mindfulness adjustment, the power map exhibited an upward trend. The increase in the average power of gamma wave indicates the relief of anxiety. The enhancement of the wave power represents an improvement in the subjects’ mindfulness ability. At the same time, the results of ANOVA showed that P &lt; 0.05, i.e., the difference was significant. From the aspect of neurophysiological signals, we objectively evaluated the ability of our experiment to relieve anxiety. The neurofeedback mindfulness regulation can effect on the brain activity pattern of anxiety disorder patients.

View Full Paper →

Hippocampal volume recovery with real-time functional MRI amygdala neurofeedback emotional training for posttraumatic stress disorder

Misaki, Masaya, Mulyana, Beni, Zotev, Vadim, Wurfel, Brent E., Krueger, Frank, Feldner, Matthew, Bodurka, Jerzy (2021) · Journal of Affective Disorders

BACKGROUND: Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS: The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS: A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS: A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS: RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.

View Full Paper →

Stress Analysis Based on Simultaneous Heart Rate Variability and EEG Monitoring

Attar, Eyad Talal, Balasubramanian, Vignesh, Subasi, Ersoy, Kaya, Mehmet (2021) · IEEE journal of translational engineering in health and medicine

OBJECTIVE: Stress is a significant risk factor for various diseases such as hypertension, heart attack, stroke, and even sudden death. Stress can also lead to psychological and behavioral disorders. Heart rate variability (HRV) can reflect changes in stress levels while other physiological factors, like blood pressure, are within acceptable ranges. Electroencephalogram (EEG) is a vital technique for studying brain activities and provides useful data regarding changes in mental status. This study incorporates EEG and a detailed HRV analysis to have a better understanding and analysis of stress. Investigating the correlation between EEG and HRV under stress conditions is valuable since they provide complementary information regarding stress. METHODS: Simultaneous electrocardiogram (ECG) and EEG recordings were obtained from fifteen subjects. HRV /EEG features were analyzed and compared in rest, stress, and meditation conditions. A one-way ANOVA and correlation coefficient were used for statistical analysis to explore the correlation between HRV features and features extracted from EEG. RESULTS: The HRV features LF (low frequency), HF (high frequency), LF/HF, and rMSSD (root mean square of the successive differences) correlated with EEG features, including alpha power band in the left hemisphere and alpha band power asymmetry. CONCLUSION: This study demonstrated five significant relationships between EEG and HRV features associated with stress. The ability to use stress-related EEG features in combination with correlated HRV features could help improve detecting stress and monitoring the progress of stress treatments/therapies. The outcomes of this study could enhance the efficiency of stress management technologies such as meditation studies and bio-feedback training.

View Full Paper →

Amygdala electrical-finger-print (AmygEFP) NeuroFeedback guided by individually-tailored Trauma script for post-traumatic stress disorder: Proof-of-concept

Fruchtman-Steinbok, Tom, Keynan, Jackob N., Cohen, Avihay, Jaljuli, Iman, Mermelstein, Shiri, Drori, Gadi, Routledge, Efrat, Krasnoshtein, Michael, Playle, Rebecca, Linden, David E. J., Hendler, Talma (2021) · NeuroImage. Clinical

BACKGROUND: Amygdala activity dysregulation plays a central role in post-traumatic stress disorder (PTSD). Hence learning to self-regulate one's amygdala activity may facilitate recovery. PTSD is further characterized by abnormal contextual processing related to the traumatic memory. Therefore, provoking the personal traumatic narrative while training amygdala down-regulation could enhance clinical efficacy. We report the results of a randomized controlled trial (NCT02544971) of a novel self-neuromodulation procedure (i.e. NeuroFeedback) for PTSD, aimed at down-regulating limbic activity while receiving feedback from an auditory script of a personal traumatic narrative. To scale-up applicability, neural activity was probed by an fMRI-informed EEG model of amygdala activity, termed Amygdala Electrical Finger-Print (AmygEFP). METHODS: Fifty-nine adults meeting DSM-5 criteria for PTSD were randomized between three groups: Trauma-script feedback interface (Trauma-NF) or Neutral feedback interface (Neutral-NF), and a control group of No-NF (to control for spontaneous recovery). Before and immediately after 15 NF training sessions patients were blindly assessed for PTSD symptoms and underwent one session of amygdala fMRI-NF for transferability testing. Follow-up clinical assessment was performed at 3- and 6-months following NF treatment. RESULTS: Patients in both NF groups learned to volitionally down-regulate AmygEFP signal and demonstrated a greater reduction in PTSD symptoms and improved down-regulation of the amygdala during fMRI-NF, compared to the No-NF group. The Trauma-NF group presented the largest immediate clinical improvement. CONCLUSIONS: This proof-of-concept study indicates the feasibility of the AmygEFP-NF process-driven as a scalable intervention for PTSD and illustrates its clinical potential. Further investigation is warranted to elucidate the contribution of AmygEFP-NF beyond exposure and placebo effects.

View Full Paper →

Neurofeedback training in major depressive disorder: A systematic review of clinical efficacy, study quality and reporting practices

Trambaiolli, Lucas R., Kohl, Simon H., Linden, David E. J., Mehler, David M. A. (2021) · Neuroscience and Biobehavioral Reviews

Major depressive disorder (MDD) is the leading cause of disability worldwide. Neurofeedback training has been suggested as a potential additional treatment option for MDD patients not reaching remission from standard care (i.e., psychopharmacology and psychotherapy). Here we systematically reviewed neurofeedback studies employing electroencephalography, or functional magnetic resonance-based protocols in depressive patients. Of 585 initially screened studies, 24 were included in our final sample (N = 480 patients in experimental and N = 194 in the control groups completing the primary endpoint). We evaluated the clinical efficacy across studies and attempted to group studies according to the control condition categories currently used in the field that affect clinical outcomes in group comparisons. In most studies, MDD patients showed symptom improvement superior to the control group(s). However, most articles did not comply with the most stringent study quality and reporting practices. We conclude with recommendations on best practices for experimental designs and reporting standards for neurofeedback training.

View Full Paper →

EEG-Based Anxious States Classification Using Affective BCI-Based Closed Neurofeedback System

Chen, Chao, Yu, Xuecong, Belkacem, Abdelkader Nasreddine, Lu, Lin, Li, Penghai, Zhang, Zufeng, Wang, Xiaotian, Tan, Wenjun, Gao, Qiang, Shin, Duk, Wang, Changming, Sha, Sha, Zhao, Xixi, Ming, Dong (2021) · Journal of Medical and Biological Engineering

Purpose: Anxiety disorder is one of the psychiatric disorders that involves extreme fear or worry, which can change the balance of chemicals in the brain. To the best of our knowledge, the evaluation of anxiety state is still based on some subjective questionnaires and there is no objective standard assessment yet. Unlike other methods, our approach focuses on study the neural changes to identify and classify the anxiety state using electroencephalography (EEG) signals. Methods: We designed a closed neurofeedback experiment that contains three experimental stages to adjust subjects’ mental state. The EEG resting state signal was recorded from thirty-four subjects in the first and third stages while EEG-based mindfulness recording was recorded in the second stage. At the end of each stage, the subjects were asked to fill a Visual Analogue Scale (VAS). According to their VAS score, the subjects were classified into three groups: non-anxiety, moderate or severe anxiety groups. Results: After processing the EEG data of each group, support vector machine (SVM) classifiers were able to classify and identify two mental states (non-anxiety and anxiety) using the Power Spectral Density (PSD) as patterns. The highest classification accuracies using Gaussian kernel function and polynomial kernel function are 92.48 ± 1.20% and 88.60 ± 1.32%, respectively. The highest average of the classification accuracies for healthy subjects is 95.31 ± 1.97% and for anxiety subjects is 87.18 ± 3.51%. Conclusions: The results suggest that our proposed EEG neurofeedback-based classification approach is efficient for developing affective BCI system for detection and evaluation of anxiety disorder states.

View Full Paper →

Neurophysiological Approach by Self-Control of Your Stress-Related Autonomic Nervous System with Depression, Stress and Anxiety Patients

Blase, Kees, Vermetten, Eric, Lehrer, Paul, Gevirtz, Richard (2021) · International Journal of Environmental Research and Public Health

BACKGROUND: Heart Rate Variability Biofeedback (HRVB) is a treatment in which patients learn self-regulation of a physiological dysregulated vagal nerve function. While the therapeutic approach of HRVB is promising for a variety of disorders, it has not yet been regularly offered in a mental health treatment setting. AIM: To provide a systematic review about the efficacy of HRV-Biofeedback in treatment of anxiety, depression, and stress related disorders. METHOD: Systematic review in PubMed and Web of Science in 2020 with terms HRV, biofeedback, Post-Traumatic Stress Disorder (PTSD), depression, panic disorder, and anxiety disorder. Selection, critical appraisal, and description of the Random Controlled Trials (RCT) studies. Combined with recent meta-analyses. RESULTS: The search resulted in a total of 881 studies. After critical appraisal, nine RCTs have been selected as well as two other relevant studies. The RCTs with control groups treatment as usual, muscle relaxation training and a "placebo"-biofeedback instrument revealed significant clinical efficacy and better results compared with control conditions, mostly significant. In the depression studies average reduction at the Beck Depression Inventory (BDI) scale was 64% (HRVB plus Treatment as Usual (TAU) versus 25% (control group with TAU) and 30% reduction (HRVB) at the PSQ scale versus 7% (control group with TAU). In the PTSD studies average reduction at the BDI-scale was 53% (HRV plus TAU) versus 24% (control group with TAU) and 22% (HRVB) versus 10% (TAU) with the PTSD Checklist (PCL). In other systematic reviews significant effects have been shown for HRV-Biofeedback in treatment of asthma, coronary artery disease, sleeping disorders, postpartum depression and stress and anxiety. CONCLUSION: This systematic review shows significant improvement of the non-invasive HRVB training in stress related disorders like PTSD, depression, and panic disorder, in particular when combined with cognitive behavioral therapy or different TAU. Effects were visible after four weeks of training, but clinical practice in a longer daily self-treatment of eight weeks is more promising. More research to integrate HRVB in treatment of stress related disorders in psychiatry is warranted, as well as research focused on the neurophysiological mechanisms.

View Full Paper →

Effects of a single session of SMR neurofeedback training on anxiety and cortisol levels

Gadea, Marien, Aliño, Marta, Hidalgo, Vanesa, Espert, Raul, Salvador, Alicia (2020) · Neurophysiologie Clinique = Clinical Neurophysiology

OBJECTIVES: According to some studies, a putatively calming effect of EEG neurofeedback training could be useful as a therapeutic tool in psychiatric practice. With the aim of elucidating this possibility, we tested the efficacy of a single session of ↑sensorimotor (SMR)/↓theta neurofeedback training for mood improvement in 32 healthy men, taking into account trainability, independence and interpretability of the results. METHODS: A pre-post design, with the following dependent variables, was applied: (i) psychometric measures of mood with regards to anxiety, depression, and anger (Profile of Mood State, POMS, and State Trait Anxiety Inventory, STAI); (ii) biological measures (salivary levels of cortisol); (iii) neurophysiological measures (EEG frequency band power analysis). In accordance with general recommendations for research in neurofeedback, a control group receiving sham neurofeedback was included. RESULTS: Anxiety levels decreased after the real neurofeedback and increased after the sham neurofeedback (P<0.01, size effect 0.9 for comparison between groups). Cortisol decreased after the experiment in both groups, though with significantly more pronounced effects in the desired direction after the real neurofeedback (P<0.04; size effect 0.7). The group receiving real neurofeedback significantly enhanced their SMR band (P<0.004; size effect 0.88), without changes in the theta band. The group receiving sham neurofeedback did not show any EEG changes. CONCLUSIONS: The improvement observed in anxiety was greater in the experimental group than in the sham group, confirmed by both subjective (psychometric) measures and objective (biological) measures. This was demonstrated to be associated with the real neurofeedback, though a nonspecific (placebo) effect likely also contributed.

View Full Paper →
Page 1 of 3Next →

Ready to Apply This Research?

Learn how QEEG brain mapping and neurofeedback can help with peak resilience. Fill out the form below and we'll share full programs and pricing information with you.

* Required fields