Perceptual Disorders
Research Papers
Detection of Stroke-Induced Visual Neglect and Target Response Prediction Using Augmented Reality and Electroencephalography
We aim to build a system incorporating electroencephalography (EEG) and augmented reality (AR) that is capable of identifying the presence of visual spatial neglect (SN) and mapping the estimated neglected visual field. An EEG-based brain-computer interface (BCI) was used to identify those spatiospectral features that best detect participants with SN among stroke survivors using their EEG responses to ipsilesional and contralesional visual stimuli. Frontal-central delta and alpha, frontal-parietal theta, Fp1 beta, and left frontal gamma were found to be important features for neglect detection. Additionally, temporal analysis of the responses shows that the proposed model is accurate in detecting potentially neglected targets. These targets were predicted using common spatial patterns as the feature extraction algorithm and regularized discriminant analysis combined with kernel density estimation for classification. With our preliminary results, our system shows promise for reliably detecting the presence of SN and predicting visual target responses in stroke patients with SN.
View Full Paper →Interventions for perceptual disorders following stroke
BACKGROUND: Perception is the ability to understand information from our senses. It allows us to experience and meaningfully interact with our environment. A stroke may impair perception in up to 70% of stroke survivors, leading to distress, increased dependence on others, and poorer quality of life. Interventions to address perceptual disorders may include assessment and screening, rehabilitation, non-invasive brain stimulation, pharmacological and surgical approaches. OBJECTIVES: To assess the effectiveness of interventions aimed at perceptual disorders after stroke compared to no intervention or control (placebo, standard care, attention control), on measures of performance in activities of daily living. SEARCH METHODS: We searched the trials registers of the Cochrane Stroke Group, CENTRAL, MEDLINE, Embase, and three other databases to August 2021. We also searched trials and research registers, reference lists of studies, handsearched journals, and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of adult stroke survivors with perceptual disorders. We defined perception as the specific mental functions of recognising and interpreting sensory stimuli and included hearing, taste, touch, smell, somatosensation, and vision. Our definition of perception excluded visual field deficits, neglect/inattention, and pain. DATA COLLECTION AND ANALYSIS: One review author assessed titles, with two review authors independently screening abstracts and full-text articles for eligibility. One review author extracted, appraised, and entered data, which were checked by a second author. We assessed risk of bias (ROB) using the ROB-1 tool, and quality of evidence using GRADE. A stakeholder group, comprising stroke survivors, carers, and healthcare professionals, was involved in this review update. MAIN RESULTS: We identified 18 eligible RCTs involving 541 participants. The trials addressed touch (three trials, 70 participants), somatosensory (seven trials, 196 participants) and visual perception disorders (seven trials, 225 participants), with one (50 participants) exploring mixed touch-somatosensory disorders. None addressed stroke-related hearing, taste, or smell perception disorders. All but one examined the effectiveness of rehabilitation interventions; the exception evaluated non-invasive brain stimulation. For our main comparison of active intervention versus no treatment or control, one trial reported our primary outcome of performance in activities of daily living (ADL): Somatosensory disorders: one trial (24 participants) compared an intervention with a control intervention and reported an ADL measure. Touch perception disorder: no trials measuring ADL compared an intervention with no treatment or with a control intervention. Visual perception disorders: no trials measuring ADL compared an intervention with no treatment or control. In addition, six trials reported ADL outcomes in a comparison of active intervention versus active intervention, relating to somatosensation (three trials), touch (one trial) and vision (two trials). AUTHORS' CONCLUSIONS: Following a detailed, systematic search, we identified limited RCT evidence of the effectiveness of interventions for perceptual disorders following stroke. There is insufficient evidence to support or refute the suggestion that perceptual interventions are effective. More high-quality trials of interventions for perceptual disorders in stroke are needed. They should recruit sufficient participant numbers, include a 'usual care' comparison, and measure longer-term functional outcomes, at time points beyond the initial intervention period. People with impaired perception following a stroke should continue to receive neurorehabilitation according to clinical guidelines.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss perceptual disorders and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →