Brain Training: Neurofeedback
Training protocols, frequency bands, and evidence-based neurofeedback approaches.
Research Library
We've curated 366 research papers for this use case. Dr. Hill and the Peak Brain team are reviewing and summarizing these papers to provide accessible, actionable insights.
Citations and abstracts shown below. Detailed summaries, key findings, and clinical applications will be added as reviews are completed.
Evaluation of the effectiveness of neurofeedback in the reduction of Posttraumatic stress disorder (PTSD) in a patient following high-voltage electric shock with the use of ERPs
BACKGROUND: The aim of our research was an evaluation of the effectiveness of neurofeedback in reducing the symptoms of Post-trauma stress disorder (PTSD), which had developed as a result of a high-voltage electric burn to the head. Quantitative EEG (QEEG) and Event related potentials (ERPs) were utilised in the evaluation. CASE STUDY: A 21-year-old patient, experienced 4(th) degree burns to his head as a result of a high-voltage electric burn. The patient was repeatedly operated on and despite the severity of the injuries was to recover. However the patient complained of flashbacks, difficulties with sleeping as well as an inability to continue work in his given profession. Specialist tests were to show the presence within him of PTSD. As a result of which the patient was provided with neurofeedback therapy. The effectiveness of this therapy in the reduction (eradication) of the symptoms of PTSD were evaluated through the utilisation of qantitative eeg (Qeeg) and event related potentials (ERPs). RESULTS: It was found that in the first examination that ERPs display the most significant deviations from the reference in the two components: (1) the one component is generated within the cingulate cortex. The pattern of its deviation from the norms is similar to that found in a group of OCD patients. In contrast to healthy subjects the component repeats itself twice; (2) the second component is generated in the medial prefrontal cortex. Its pattern (neuromarker) is similar to that found in PTSD patients. There is a delay in the late part of the component, which probably reflects the flashbacks. In the second examination, after neurofeedback training, the ERPs were similar to the norm. The patient returned to work. CONCLUSIONS: Chronic PTSD developed within the patient as a result of a high-voltage electric burn. The application of a method of therapy (neurofeedback) resulted in the withdrawal of the syndrome symptoms. ERPs in a GO/NOGO task can be used to plan neurofeedback and in the assessment of functional brain changes induced by neurotherapeutic programmes. Funds Collection: Private sources.
View Full Paper →Neurofeedback in Hereditary Angioedema: A Single Case Study of Symptom Reduction
Neurofeedback training was performed consisting of rewarding and encouraging 12–15 Hz brainwaves (SMR), while simultaneously discouraging 4–7 Hz brainwaves (theta) and 22–30 Hz brainwaves (high beta) in the right dorsal posterior quadrant of the brain (T4, P4) for 20 half-hour NFB sessions to determine the impact on cortisol levels, DHEA-S levels, scores on the Symptom Checklist-90-R (SCL-90-R), the quality of life inventory, and acute attack medication usage for a Hereditary Angioedema patient.
View Full Paper →Neurofeedback as a nonpharmacological treatment for adults with attention-deficit/hyperactivity disorder (ADHD): study protocol for a randomized controlled trial
Background: Neurofeedback has been applied effectively in various areas, especially in the treatment of children with attention-deficit/hyperactivity disorder (ADHD). This study protocol is designed to investigate the effect of slow cortical potential (SCP) feedback and a new form of neurofeedback using near-infrared spectroscopy (NIRS) on symptomatology and neurophysiological parameters in an adult ADHD population. A comparison of SCP and NIRS feedback therapy methods has not been previously conducted and may yield valuable findings about alternative treatments for adult ADHD. Methods/Design: The outcome of both neurofeedback techniques will be assessed over 30 treatment sessions and after a 6-month follow-up period, and then will be compared to a nonspecific biofeedback treatment. Furthermore, to investigate if treatment effects in this proof-of-principle study can be predicted by specific neurophysiological baseline parameters, regression models will be applied. Finally, a comparison with healthy controls will be conducted to evaluate deviant pretraining neurophysiological parameters, stability of assessment measures, and treatment outcome. Discussion: To date, an investigation and comparison of SCP and NIRS feedback training to an active control has not been conducted; therefore, we hope to gain valuable insights in effects and differences of these types of treatment for ADHD in adults. Trial registration: This study is registered with the German Registry of Clinical Trials:DRKS00006767, date of registration: 8 October 2014. © 2015 Mayer et al.; licensee BioMed Central.
View Full Paper →A Methodology of Analysis for Monitoring Treatment Progression with 19-Channel Z-Score Neurofeedback (19ZNF) in a Single-Subject Design
19-Channel Z-Score Neurofeedback (19ZNF) is a modality using 19-electrodes with real-time normative database z-scores, suggesting effective clinical outcomes in fewer sessions than traditional neurofeedback. Thus, monitoring treatment progression and clinical outcome is necessary. The area of focus in this study was a methodology of quantitative analysis for monitoring treatment progression and clinical outcome with 19ZNF. This methodology is noted as the Sites-of-Interest, which included repeated measures analyses of variance (rANOVA) and t-tests for z-scores; it was conducted on 10 cases in a single subject design. To avoid selection bias, the 10 sample cases were randomly selected from a pool of 17 cases that met the inclusion criteria. Available client outcome measures (including self-report) are briefly discussed. The results showed 90 % of the pre-post comparisons moved in the targeted direction (z = 0) and of those, 96 % (80 % Bonferroni corrected) of the t-tests and 96 % (91 % Bonferroni corrected) of the rANOVAs were statistically significant; thus indicating a progression towards the mean in 15 or fewer 19ZNF sessions. All cases showed and reported improvement in all outcome measures (including quantitative electroencephalography assessment) at case termination
Transient Adverse Side Effects During Neurofeedback Training: A Randomized, Sham-Controlled, Double Blind Study
The benefits of clinical neurofeedback training are well known, however, its adverse side-effects are less studied. This research focuses on the transient adverse side effects of neurofeedback training via a double-blind, sham/controlled methodology. Thirty healthy undergraduate students volunteers were randomly divided into three treatment groups: increasing a modified Sensory Motor Rhythm, increasing Upper Alpha, and Sham/control group who receive a random reward. The training sessions were administered for a total of ten sessions. Questionnaires of transient adverse side effects were completed by all volunteers before each session. The results suggest that similar to most medical treatments, neurofeedback can cause transient adverse side effects. Moreover, most participants reported experiencing some side effects. The side effects can be divided into non-specific side effect, associated with the neurofeedback training in general and specific ones associated with the particular protocol. Sensory Motor Rhythm protocol seems to be the most sensitive to side effects
View Full Paper →Neurofeedback, Self-Regulation, and Brain Imaging: Clinical Science and Fad in the Service of Mental Disorders
Neurofeedback draws on multiple techniques that propel both healthy and patient populations to self-regulate neural activity. Since the 1970s, numerous accounts have promoted electroencephalography-neurofeedback as a viable treatment for a host of mental disorders. Today, while the number of health care providers referring patients to neurofeedback practitioners increases steadily, substantial methodological and conceptual caveats continue to pervade empirical reports. And yet, nascent imaging technologies (e.g., real-time functional magnetic resonance imaging) and increasingly rigorous protocols are paving the road towards more effective applications and a better scientific understanding of the underlying mechanisms. Here, we outline common neurofeedback methods, illuminate the tenuous state of the evidence, and sketch out future directions to further unravel the potential merits of this contentious therapeutic prospect.
View Full Paper →Self-Regulation of Anterior Insula with Real-Time fMRI and Its Behavioral Effects in Obsessive-Compulsive Disorder: A Feasibility Study
INTRODUCTION: Obsessive-compulsive disorder (OCD) is a common and chronic condition that can have disabling effects throughout the patient's lifespan. Frequent symptoms among OCD patients include fear of contamination and washing compulsions. Several studies have shown a link between contamination fears, disgust over-reactivity, and insula activation in OCD. In concordance with the role of insula in disgust processing, new neural models based on neuroimaging studies suggest that abnormally high activations of insula could be implicated in OCD psychopathology, at least in the subgroup of patients with contamination fears and washing compulsions. METHODS: In the current study, we used a Brain Computer Interface (BCI) based on real-time functional magnetic resonance imaging (rtfMRI) to aid OCD patients to achieve down-regulation of the Blood Oxygenation Level Dependent (BOLD) signal in anterior insula. Our first aim was to investigate whether patients with contamination obsessions and washing compulsions can learn to volitionally decrease (down-regulate) activity in the insula in the presence of disgust/anxiety provoking stimuli. Our second aim was to evaluate the effect of down-regulation on clinical, behavioural and physiological changes pertaining to OCD symptoms. Hence, several pre- and post-training measures were performed, i.e., confronting the patient with a disgust/anxiety inducing real-world object (Ecological Disgust Test), and subjective rating and physiological responses (heart rate, skin conductance level) of disgust towards provoking pictures. RESULTS: Results of this pilot study, performed in 3 patients (2 females), show that OCD patients can gain self-control of the BOLD activity of insula, albeit to different degrees. In two patients positive changes in behaviour in the EDT were observed following the rtfMRI trainings. Behavioural changes were also confirmed by reductions in the negative valence and in the subjective perception of disgust towards symptom provoking images. CONCLUSION: Although preliminary, results of this study confirmed that insula down-regulation is possible in patients suffering from OCD, and that volitional decreases of insula activation could be used for symptom alleviation in this disorder.
View Full Paper →The pharmacological and non-pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: protocol for a systematic review and network meta-analysis of randomized controlled trials
BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders of children and adolescents, with a significant impact on health services and the community in terms of economic and social burdens. The objective of this systematic review will be to evaluate the comparative efficacy and safety of pharmacological and non-pharmacological treatments in children and adolescents with ADHD. METHODS: Searches involving PubMed/MEDLINE and the Cochrane Database of Systematic Reviews will be used to identify related systematic reviews and relevant randomized trials. Search results will be supplemented by reports from the regulatory and health technology agencies, clinical trials registers and by data requested from trialists and/or pharmaceutical companies. We will consider studies evaluating pharmacological interventions (e.g. stimulants, non-stimulants, antidepressants), psychological interventions (e.g. behavioural interventions, cognitive training and neurofeedback) and complementary and alternative medicine interventions (e.g. dietary interventions, supplement with fatty acids, vitamins, minerals, aminoacids, herbal treatment, homeopathy, and mind-body interventions including massage, chiropractic, acupuncture, yoga, meditation, Tai chi). Eligible control conditions will be placebo, waitlist, no treatment and usual care. Randomized controlled trials of a minimum of 3 weeks duration will be included. The primary outcomes of interest will be the proportion of patients who responded to treatment and who dropped out of the allocated treatment, respectively. Secondary outcomes will include treatment discontinuation due to adverse events, as well as the occurrences of serious adverse events and specific adverse events (decreased weight, anorexia, insomnia and sleep disturbances, anxiety, syncope and cardiovascular events). Two reviewers will independently screen references identified by the literature search, as well as potentially relevant full-text articles in duplicate. Data will be abstracted and risk of bias will be appraised by two team members independently. Conflicts at all levels of screening and abstraction will be resolved through discussion. Random-effects pairwise meta-analyses and Bayesian network meta-analyses will be conducted where appropriate. DISCUSSION: This systematic review and network meta-analysis will compare the efficacy and safety of treatments used for ADHD in children and adolescents. The findings will assist patients, clinicians and healthcare providers to make evidence-based decisions regarding treatment selection. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42014015008 .
Brain self-regulation in criminal psychopaths
Psychopathic individuals are characterized by impaired affective processing, impulsivity, sensation-seeking, poor planning skills and heightened aggressiveness with poor self-regulation. Based on brain self-regulation studies using neurofeedback of Slow Cortical Potentials (SCPs) in disorders associated with a dysregulation of cortical activity thresholds and evidence of deficient cortical functioning in psychopathy, a neurobiological approach seems to be promising in the treatment of psychopathy. The results of our intensive brain regulation intervention demonstrate, that psychopathic offenders are able to gain control of their brain excitability over fronto-central brain areas. After SCP self-regulation training, we observed reduced aggression, impulsivity and behavioral approach tendencies, as well as improvements in behavioral-inhibition and increased cortical sensitivity for error-processing. This study demonstrates improvements on the neurophysiological, behavioral and subjective level in severe psychopathic offenders after SCP-neurofeedback training and could constitute a novel neurobiologically-based treatment for a seemingly change-resistant group of criminal psychopaths.
View Full Paper →Influence of electroencephalography neurofeedback training on episodic memory: A randomized, sham-controlled, double-blind study
The relationships between memory processes and oscillatory electroencephalography (EEG) are well established. Neurofeedback training (NFT) may cause participants to better regulate their brain EEG oscillations. The present study is a double-blind sham-controlled design investigating the effect of NFT on memory. NFT included up-training upper alpha (UA) band, up-training sensory-motor rhythm (SMR) band and sham protocol. Thirty healthy adult volunteers were randomly divided into three treatment groups. NFT sessions (30 min each) took place twice weekly for a total of 10 sessions while memory testing took place pre- and post-training. The results indicate dissociation between SMR and UA NFT and different memory processes. While the SMR protocol resulted in improving automatic, item-specific and familiarity-based processes in memory, the UA protocol resulted in improved strategic and controlled recollection. The implications of the results are discussed.
View Full Paper →Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement
Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.
View Full Paper →Near-infrared spectroscopy (NIRS) neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD)—a pilot study
In this pilot study near-infrared spectroscopy (NIRS) neurofeedback was investigated as a new method for the treatment of Attention Deficit-/Hyperactivity Disorder (ADHD). Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP) and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus). The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS), to produce positive or negative shifts of SCP (EEG) or to increase or decrease muscular activity (EMG). In each group nine children with ADHD, aged 7–10 years, took part. Changes in parents’ ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers’ ratings of ADHD symptoms, parents’ and teachers’ ratings of associated behavioral symptoms, childrens’ self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents’ ratings. In teachers’ ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessionsof NIRS-, EEGand EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, theresults of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to consider in the treatment of ADHD
View Full Paper →Selected forms of therapy for individuals with autism spectrum disorder
Abstract Autism spectrum disorder (ASD) is a condition of multiple origins. It is characterised by a range of behaviour patterns, in addition to disturbed social and emotional functioning. Of note, early therapy is conducive to better treatment results. A few recently discussed therapies have a particularly positive impact on children with ASD. Corbett et al. [2] proposed Sense Theatre. This involves instilling appropriate behaviours and communication patterns into the afflicted individual through acting. Role-playing and other similar techniques also offer an opportunity for children with ASD to improve their areas of empathy and social cooperation. With regard to bio-feedback-related techniques, Friedrich et al. [3] was noted for developing the Brain-computer method, a system of game interface connected to an external device. The method targets the mirror neuron system (MNS) in order to enhance cognitive, emotional and behavioural functions through neurofeedback. An approach put forward by Solomon et al. [10] is called ‘Play and Language for Autistic Youngsters (PLAY) Project Home Consultation’. Herein, volunteers visit patients’ homes on a regular basis to engage the children in play and games, after which they discuss with parents, the issues that came up. The PLAY reduces guardians’ stress levels and improves children’s skills. A pharmacological method is that of administering sulphoraphane [9], which reduces damaging effects. As others claim [8,1,7], other dietary approaches prove efficient as well. In summation, an early intervention and the employment of a multimodal treatment approach can be of importance for enhancing the life of ASD-affected children.
Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity
While issues of efficacy and specificity are crucial for the future of neurofeedback training, there may be alternative designs and control analyses to circumvent the methodological and ethical problems associated with double-blind placebo studies. Surprisingly, most NF studies do not report the most immediate result of their NF training, i.e., whether or not children with ADHD gain control over their brain activity during the training sessions. For the investigation of specificity, however, it seems essential to analyze the learning and adaptation processes that take place in the course of the training and to relate improvements in self-regulated brain activity across training sessions to behavioral, neuropsychological and electrophysiological outcomes. To this aim, a review of studies on neurofeedback training with ADHD patients which include the analysis of learning across training sessions or relate training performance to outcome is presented. Methods on how to evaluate and quantify learning of EEG regulation over time are discussed. “Non-learning” has been reported in a small number of ADHD-studies, but has not been a focus of general methodological discussion so far. For this reason, selected results from the brain-computer interface (BCI) research on the so-called “brain-computer illiteracy”, the inability to gain control over one’s brain activity, are also included. It is concluded that in the discussion on specificity, more attention should be devoted to the analysis of EEG regulation performance in the course of the training and its impact on clinical outcome. It is necessary to improve the knowledge on characteristic cross-session and within-session learning trajectories in ADHD and to provide the best conditions for learning
View Full Paper →An Effective Neurofeedback Intervention to Improve Social Interactions in Children with Autism Spectrum Disorder
Neurofeedback training (NFT) approaches were investigated to improve behavior, cognition and emotion regulation in children with autism spectrum disorder (ASD). Thirteen children with ASD completed pre-/post-assessments and 16 NFT-sessions. The NFT was based on a game that encouraged social interactions and provided feedback based on imitation and emotional responsiveness. Bidirectional training of EEG mu suppression and enhancement (8–12 Hz over somatosensory cortex) was compared to the standard method of enhancing mu. Children learned to control mu rhythm with both methods and showed improvements in (1) electrophysiology: increased mu suppression, (2) emotional responsiveness: improved emotion recognition and spontaneous imitation, and (3) behavior: significantly better behavior in every-day life. Thus, these NFT paradigms improve aspects of behavior necessary for successful social interactions.
Eficacia del neurofeedback para el tratamiento de los trastornos del espectro autista: Una revisión sistemática
Autism spectrum disorders (ASDs) are characterized by impairments in communication and interaction skills, stereotyped patterns of behavior and restricted interests. They show anomalous electroencephalographic (EEG) patterns that might explain those impairments. Neurofeedback is considered to be a therapeutic alternative for their normalization. The objective was to review the evidence on the efficacy of neurofeedback as a treatment for ASDs. We conducted a systematic review of 17 empirical studies localized thru an exhaustive bibliographic search of the databases PsycInfo, PsycArticles and Pubmed. The results indicate certain efficacy of neurofeedback in the treatment of abnormal EEG patterns and core ASD symptoms, as well as others such as impairments in attention and cognitive functions, anxiety or behavioral disorders. Neurofeedback may be considered a treatment "with modest experimental support" or "probably efficacious" with "controversial support", though more methodologically rigorous studies are needed to determine its therapeutic efficacy with more certainty
View Full Paper →Musical neurofeedback for treating depression in elderly people
We introduce a new neurofeedback approach, which allows users to manipulate expressive parameters in music performances using their emotional state, and we present the results of a pilot clinical experiment applying the approach to alleviate depression in elderly people. Ten adults (9 female and 1 male, mean = 84, SD = 5.8) with normal hearing participated in the neurofeedback study consisting of 10 sessions (2 sessions per week) of 15 min each. EEG data was acquired using the Emotiv EPOC EEG device. In all sessions, subjects were asked to sit in a comfortable chair facing two loudspeakers, to close their eyes, and to avoid moving during the experiment. Participants listened to music pieces preselected according to their music preferences, and were encouraged to increase the loudness and tempo of the pieces, based on their arousal and valence levels. The neurofeedback system was tuned so that increased arousal, computed as beta to alpha activity ratio in the frontal cortex corresponded to increased loudness, and increased valence, computed as relative frontal alpha activity in the right lobe compared to the left lobe, corresponded to increased tempo. Pre and post evaluation of six participants was performed using the BDI depression test, showing an average improvement of 17.2% (1.3) in their BDI scores at the end of the study. In addition, an analysis of the collected EEG data of the participants showed a significant decrease of relative alpha activity in their left frontal lobe (p = 0.00008), which may be interpreted as an improvement of their depression condition.
View Full Paper →Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims
Background Using EEG based neurofeedback (NF), the activity of the brain is modulated directly and, therefore, the cortical substrates of cognitive functions themselves. In the present study, we investigated the ability of stroke patients to control their own brain activity via NF and evaluated specific effects of different NF protocols on cognition, in particular recovery of memory. Methods N = 17 stroke patients received up to ten sessions of either SMR (N = 11, 12–15 Hz) or Upper Alpha (N = 6, e.g. 10–12 Hz) NF training. N = 7 stroke patients received treatment as usual as control condition. Furthermore, N = 40 healthy controls performed NF training as well. To evaluate the NF training outcome, a test battery assessing different cognitive functions was performed before and after NF training. Results About 70 % of both patients and controls achieved distinct gains in NF performance leading to improvements in verbal short- and long-term memory, independent of the used NF protocol. The SMR patient group showed specific improvements in visuo-spatial short-term memory performance, whereas the Upper Alpha patient group specifically improved their working memory performance. NF training effects were even stronger than effects of traditional cognitive training methods in stroke patients. NF training showed no effects on other cognitive functions than memory. Conclusions Post-stroke victims with memory deficits could benefit from NF training as much as healthy controls. The used NF training protocols (SMR, Upper Alpha) had specific as well as unspecific effects on memory. Hence, NF might offer an effective cognitive rehabilitation tool improving memory deficits of stroke survivors.
View Full Paper →Nonpharmacological Treatments for ADHD: A Meta-Analytic Review
Objective: The authors replicated and expanded on Fabiano et al.’s meta-analysis of behavioral treatments for ADHD, systematically comparing the efficacy of 7 nonpharmacological interventions. Method: A total of 14 controlled treatment studies conducted post-1994—evaluating behavior modification, neurofeedback therapy, multimodal psychosocial treatment, school-based programs, working memory training, parent training, and self-monitoring—were identified, primarily by searching electronic English-language databases. The results were meta-analyzed: mean-weighted effect sizes for the treatment outcomes of 625 participants (382 treatment, 243 controls) were calculated, and moderator analyses examined contributions of gender, ADHD subtype, and treatment “dosage” to outcome. Results: Behavior modification and neurofeedback treatments were most supported by this evidence. Interventions were generally more efficacious for girls, and least efficacious for the “combined” ADHD subtype. The authors found no dose or age effects. Conclusion: Based on the small, published literature, this study supports some nonpharmacological interventions for ADHD, and indicates directions for more evaluation research into psychological treatments.
View Full Paper →Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework
Neurofeedback (NFB) is emerging as a promising technique that enables self-regulation of ongoing brain oscillations. However, despite a rise in empirical evidence attesting to its clinical benefits, a solid theoretical basis is still lacking on the manner in which NFB is able to achieve these outcomes. The present work attempts to bring together various concepts from neurobiology, engineering, and dynamical systems so as to propose a contemporary theoretical framework for the mechanistic effects of NFB. The objective is to provide a firmly neurophysiological account of NFB, which goes beyond traditional behaviorist interpretations that attempt to explain psychological processes solely from a descriptive standpoint whilst treating the brain as a “black box”. To this end, we interlink evidence from experimental findings that encompass a broad range of intrinsic brain phenomena: starting from “bottom-up” mechanisms of neural synchronization, followed by “top-down” regulation of internal brain states, moving to dynamical systems plus control-theoretic principles, and concluding with activity-dependent as well as homeostatic forms of brain plasticity. In support of our framework, we examine the effects of NFB in several brain disorders, including attention-deficit hyperactivity (ADHD) and post-traumatic stress disorder (PTSD). In sum, it is argued that pathological oscillations emerge from an abnormal formation of brain-state attractor landscape(s). The central thesis put forward is that NFB tunes brain oscillations toward a homeostatic set-point which affords an optimal balance between network flexibility and stability (i.e., self-organised criticality (SOC)).
View Full Paper →Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting
Frontal-midline (fm) theta oscillations as measured via the electroencephalogram (EEG) have been suggested as neural "working language” of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs). Here, the effects of neurofeedback (NF), a learning method to self-up-regulate fm-theta over fm electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced NF intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after NF significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. Furthermore, task-related EEG changes show a distinct pattern for fm-theta after training between the NF and the pseudo-neurofeedback group, which indicates that NF training indeed tackles EFs-networks. In sum, the modulation of fm-theta via NF may serve as potent treatment approach for executive dysfunctions.
View Full Paper →Quality of Work Life Factors for Mental Health Therapists Providing Neurofeedback
The current study investigates factors connected to Quality of Work Life (QWL) for mental health therapists providing neurofeedback (NFB) based on previous NFB conceptual framework and QWL findings (Larson, In Press; Larson, Cothran, Drandorff, Morgan, & Ryan, 2012; Larson, Ryan, & Baerentzen, 2010). One hundred and ninety-eight NFB therapists completed online surveys gathering demographics and ratings of practice behaviors and characteristics. SPSS version 20 was utilized for descriptive statistics, frequencies, means, standard deviations, ranges, Pearson Product-Moment Correlation analyses, independent samples t-tests, and a regular simultaneous regression analysis. Results of this study found that QWL separately correlated with calmness, observant, realistic, and optimistic scores, and therapists with high levels of technique and commitment reported significantly higher QWL scores compared to therapists with moderate levels of technique and commitment. The current findings indicated that 40% of the variance in the QWL can be determined by variance in a significant multiple correlation of confidence, monthly NFB sessions, years of NFB experience, and burnout.
View Full Paper →Innovative technologies applied to sensorimotor rehabilitation after stroke
Innovative technologies for sensorimotor rehabilitation after stroke have dramatically increased these past 20 years. Based on a review of the literature on "Medline" and "Web of Science" between 1990 and 2013, we offer an overview of available tools and their current level of validation. Neuromuscular electric stimulation and/or functional electric stimulation are widely used and highly suspected of being effective in upper or lower limb stroke rehabilitation. Robotic rehabilitation has yielded various results in the literature. It seems to have some effect on functional capacities when used for the upper limb. Its effectiveness in gait training is more controversial. Virtual reality is widely used in the rehabilitation of cognitive and motor impairments, as well as posture, with admitted benefits. Non-invasive brain stimulation (rTMS and TDCS) are promising in this indication but clinical evidence of their effectiveness is still lacking. In the same manner, these past five years, neurofeedback techniques based on brain signal recordings have emerged with a special focus on their therapeutic relevance in rehabilitation. Technological devices applied to rehabilitation are revolutionizing our clinical practices. Most of them are based on advances in neurosciences allowing us to better understand the phenomenon of brain plasticity, which underlies the effectiveness of rehabilitation. The acceptation and "real use" of those devices is still an issue since most of them are not easily available in current practice.
View Full Paper →Neurofeedback in attention-deficit/hyperactivity disorder – different models, different ways of application
In children with attention-deficit/hyperactivity disorder (ADHD), different neurofeedback (NF) protocols have been applied, with the most prominent differentiation between EEG frequency-band (e.g., theta/beta) training and training of slow cortical potentials (SCPs). However, beyond distinctions between such basic NF variables, there are also competing assumptions about mechanisms of action (e.g., acquisition of regulation capability, generalization to daily life behavior). In the present article, we provide a framework for NF models and suppose two hypothetical models, which we call “conditioning-and-repairing model” and “skill-acquisition model,” reflecting extreme poles within this framework. We argue that the underlying model has an impact not only on how NF is applied but also on the selection of evaluation strategies and suggest using evaluation strategies beyond beaten paths of pharmacological research. Reflecting available studies, we address to what extent different views are supported by empirical data. We hypothesize that different models may hold true depending on the processes and behaviors to be addressed by a certain NF protocol. For example, the skill-acquisition model is supported by recent findings as an adequate explanatory framework for the mechanisms of action of SCP training in ADHD. In conclusion, evaluation and interpretation of NF trials in ADHD should be based on the underlying model and the way training is applied, which, in turn, should be stated explicitly in study reports.
View Full Paper →Neurofeedback in children with attention-deficit/hyperactivity disorder (ADHD)--a controlled multicenter study of a non-pharmacological treatment approach
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioral disorder of childhood and has often a chronic course persisting into adulthood. However, up to 30% of children treated with stimulants either fail to show an improvement or suffer adverse side effects, including decreased appetite, insomnia and irritability and there is no evidence of long term efficacy of stimulants for ADHD. A series of studies has shown that neurofeedback is an effective additional or alternative treatment for children with ADHD, leading to e.g. significant and stable improvement in behavior, attention and IQ. Significant treatment effects of neurofeedback have also been verified in meta-analyses. Most of the trials, however, have been criticized for methodological difficulties, particularly lacking appropriate control conditions and number of patients included. This randomized study examines the efficacy of slow cortical potentials (SCP) -neurofeedback, controlling unspecific effects of the setting by comparing two active treatment modalities. METHODS/DESIGN: A total of 144 patients with ADHD, older than six and younger than ten years, in some cases with additional pharmacological treatment, are included in this trial. In five trial centres patients are treated either with SCP-feedback or electromyographic (EMG) -feedback in 25 sessions within 3 months. A comprehensive test battery is conducted before and after treatment and at follow-up 6 month later, to assess core symptoms of ADHD, general psychopathology, attentional performance, comorbid symptoms, intelligence, quality of life and cortical arousal. DISCUSSION: The efficacy of SCP-feedback training for children with ADHD is evaluated in this randomized controlled study. In addition to behavior ratings and psychometric tests neurophysiological parameters serve as dependent variables. Further, the choice of EMG-biofeedback as an active control condition is debated. TRIALS REGISTRATION: Current Controlled Trials ISRCTN76187185. Registered 5 February 2009.
View Full Paper →Infra-slow Fluctuation Training in Clinical Practice: A Technical History
Infra-slow Fluctuation (ISF) electroencephalogram (EEG) biofeedback is a recent development in neurofeedback training. This form of training is focused on the lowest energy the brain produces (< 0.1 Hz). The intervention is performed with a Direct Current (DC) coupled neurofeedback amplifier. It is distinct from Slow Cortical Potential (SCP) training and Infra-Low Frequency (ILF) training. It shares a similar optimization process with ILF that focuses on emergent state shifts within sessions. These state shifts require frequency adjustments that optimize client response to the training in real time. Due to the technical difficulties inherent in recording these frequencies, EEG investigators largely neglected this low energy until recently. As DC amplifiers improved, the slow frequencies became a signal of increasing interest to researchers. Research has demonstrated an important role for the infra-slow oscillations in clinical work. Positive clinical case outcomes suggest that a larger controlled study is warranted. The technical, clinical, and equipment requirements of the intervention make this form of neurofeedback unique in the pantheon of EEG biofeedback interventions.
View Full Paper →What learning theories can teach us in designing neurofeedback treatments
Popular definitions of neurofeedback point out that neurofeedback is a process of operant conditioning which leads to self-regulation of brain activity. Self-regulation of brain activity is considered to be a skill. The aim of this paper is to clarify that not only operant conditioning plays a role in the acquisition of this skill. In order to design the learning process additional references have to be derived from classical conditioning, two-process-theory and in particular from skill learning and research into motivational aspects. The impact of learning by trial and error, cueing of behavior, feedback, reinforcement, and knowledge of results as well as transfer of self-regulation skills into everyday life will be analyzed in this paper. In addition to these learning theory basics this paper tries to summarize the knowledge about acquisition of self-regulation from neurofeedback studies with a main emphasis on clinical populations. As a conclusion it is hypothesized that learning to self-regulate has to be offered in a psychotherapeutic, i.e., behavior therapy framework.
View Full Paper →Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression
Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD) and normalize with remission. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training with the goal of upregulating amygdala activity during recall of happy autobiographical memories (AMs) has been suggested, and recently explored, as a novel therapeutic approach that resulted in improvement in self-reported mood in depressed subjects. In this study, we assessed the possibility of sustained brain changes as well as the neuromodulatory effects of rtfMRI-nf training of the amygdala during recall of positive AMs in MDD and matched healthy subjects. MDD and healthy subjects went through one visit of rtfMRI-nf training. Subjects were assigned to receive active neurofeedback from the left amygdale (LA) or from a control region putatively not modulated by AM recall or emotion regulation, that is, the left horizontal segment of the intraparietal sulcus. To assess lasting effects of neurofeedback in MDD, the resting-state functional connectivity before and after rtfMRI-nf in 27 depressed subjects, as well as in 27 matched healthy subjects before rtfMRI-nf was measured. Results show that abnormal hypo-connectivity with LA in MDD is reversed after rtfMRI-nf training by recalling positive AMs. Although such neuromodulatory changes are observed in both MDD groups receiving feedback from respective active and control brain regions, only in the active group are larger decreases of depression severity associated with larger increases of amygdala connectivity and a significant, positive correlation is found between the connectivity changes and the days after neurofeedback. In addition, active neurofeedback training of the amygdala enhances connectivity with temporal cortical regions, including the hippocampus. These results demonstrate lasting brain changes induced by amygdala rtfMRI-nf training and suggest the importance of reinforcement learning in rehabilitating emotion regulation in depression.
View Full Paper →Volitional control of the anterior insula in criminal psychopaths using real-time fMRI neurofeedback: a pilot study
This pilot study aimed to explore whether criminal psychopaths can learn volitional regulation of the left anterior insula with real-time fMRI neurofeedback. Our previous studies with healthy volunteers showed that learned control of the blood oxygenation-level dependent (BOLD) signal was specific to the target region, and not a result of general arousal and global unspecific brain activation, and also that successful regulation modulates emotional responses, specifically to aversive picture stimuli but not neutral stimuli. In this pilot study, four criminal psychopaths were trained to regulate the anterior insula by employing negative emotional imageries taken from previous episodes in their lives, in conjunction with contingent feedback. Only one out of the four participants learned to increase the percent differential BOLD in the up-regulation condition across training runs. Subjects with higher Psychopathic Checklist-Revised (PCL:SV) scores were less able to increase the BOLD signal in the anterior insula than their lower PCL:SV counterparts. We investigated functional connectivity changes in the emotional network due to learned regulation of the successful participant, by employing multivariate Granger Causality Modeling (GCM). Learning to up-regulate the left anterior insula not only increased the number of connections (causal density) in the emotional network in the single successful participant but also increased the difference between the number of outgoing and incoming connections (causal flow) of the left insula. This pilot study shows modest potential for training psychopathic individuals to learn to control brain activity in the anterior insula.
View Full Paper →A Pilot Feasibility Study of Neurofeedback for Children with Autism
Neurofeedback (NFB) is an emerging treatment for children with autism spectrum disorder (ASD). This pilot study examined the feasibility of NFB for children with ASD. Ten children ages 7-12 with high functioning ASD and attention difficulties received a NFB attention training intervention. A standardized checklist captured feasibility, including focus during exercises and academic tasks, as well as off-task behaviors. Active behaviors and vocalizations were the most frequent off-task behaviors. Positive reinforcement and breaks including calm breathing exercises were the most common supports. Low motivation was associated with higher feasibility challenges, yet parental involvement and accommodations were helpful. This pilot study shows that it is feasible to conduct NFB sessions with children with high functioning autism and attention difficulties. © 2014 Springer Science+Business Media New York
View Full Paper →Selective visual attention to drive cognitive brain–machine interfaces: from concepts to neurofeedback and rehabilitation applications
Brain-machine interfaces (BMIs) using motor cortical activity to drive an external effector like a screen cursor or a robotic arm have seen enormous success and proven their great rehabilitation potential. An emerging parallel effort is now directed to BMIs controlled by endogenous cognitive activity, also called cognitive BMIs. While more challenging, this approach opens new dimensions to the rehabilitation of cognitive disorders. In the present work, we focus on BMIs driven by visuospatial attention signals and we provide a critical review of these studies in the light of the accumulated knowledge about the psychophysics, anatomy, and neurophysiology of visual spatial attention. Importantly, we provide a unique comparative overview of the several studies, ranging from non-invasive to invasive human and non-human primates studies, that decode attention-related information from ongoing neuronal activity. We discuss these studies in the light of the challenges attention-driven cognitive BMIs have to face. In a second part of the review, we discuss past and current attention-based neurofeedback studies, describing both the covert effects of neurofeedback onto neuronal activity and its overt behavioral effects. Importantly, we compare neurofeedback studies based on the amplitude of cortical activity to studies based on the enhancement of cortical information content. Last, we discuss several lines of future research and applications for attention-driven cognitive brain-computer interfaces (BCIs), including the rehabilitation of cognitive deficits, restored communication in locked in patients, and open-field applications for enhanced cognition in normal subjects. The core motivation of this work is the key idea that the improvement of current cognitive BMIs for therapeutic and open field applications needs to be grounded in a proper interdisciplinary understanding of the physiology of the cognitive function of interest, be it spatial attention, working memory or any other cognitive signal.
Slow cortical potential and theta/beta neurofeedback training in adults: effects on attentional processes and motor system excitability
Neurofeedback (NF) is being successfully applied, among others, in children with attention deficit/hyperactivity disorder (ADHD) and as a peak performance training in healthy subjects. However, the neuronal mechanisms mediating a successful NF training have not yet been sufficiently uncovered for both theta/beta (T/B), and slow cortical potential (SCP) training, two protocols established in NF in ADHD. In the present, randomized, controlled investigation in adults without a clinical diagnosis (n = 59), the specificity of the effects of these two NF protocols on attentional processes and motor system excitability were to be examined, focusing on the underlying neuronal mechanisms. Neurofeedback training consisted of 10 double sessions, and self-regulation skills were analyzed. Pre- and post-training assessments encompassed performance and event-related potential measures during an attention task, and motor system excitability assessed by transcranial magnetic stimulation. Some NF protocol-specific effects have been obtained. However, due to the limited sample size medium effects did not reach the level of significance. Self-regulation abilities during negativity trials of the SCP training were associated with increased contingent negative variation amplitudes, indicating improved resource allocation during cognitive preparation. Theta/beta training was associated with increased response speed and decreased target-P3 amplitudes after successful theta/beta regulation suggested reduced attentional resources necessary for stimulus evaluation. Motor system excitability effects after theta/beta training paralleled the effects of methylphenidate. Overall, our results are limited by the non-sufficiently acquired self-regulation skills, but some specific effects between good and poor learners could be described. Future studies with larger sample sizes and sufficient acquisition of self-regulation skills are neededto further evaluate the protocol-specific effects on attention and motor system excitability reported.
View Full Paper →Does EEG-neurofeedback improve neurocognitive functioning in children with attention-deficit/hyperactivity disorder? A systematic review and a double-blind placebo-controlled study
BACKGROUND: The number of placebo-controlled randomized studies relating to EEG-neurofeedback and its effect on neurocognition in attention-deficient/hyperactivity disorder (ADHD) is limited. For this reason, a double blind, randomized, placebo-controlled study was designed to assess the effects of EEG-neurofeedback on neurocognitive functioning in children with ADHD, and a systematic review on this topic was performed. METHODS: Forty-one children (8-15 years) with a DSM-IV-TR diagnosis of ADHD were randomly allocated to EEG-neurofeedback or placebo-neurofeedback treatment for 30 sessions, twice a week. Children were stratified by age, electrophysiological state of arousal, and medication use. Neurocognitive tests of attention, executive functioning, working memory, and time processing were administered before and after treatment. Researchers, teachers, children and their parents, with the exception of the neurofeedback-therapist, were all blind to treatment assignment. Outcome measures were the changes in neurocognitive performance before and after treatment. CLINICAL TRIAL REGISTRATION: www.clinicaltrials.gov: NCT00723684. RESULTS: No significant treatment effect on any of the neurocognitive variables was found. A systematic review of the current literature also did not find any systematic beneficial effect of EEG-neurofeedback on neurocognitive functioning. CONCLUSION: Overall, the existing literature and this study fail to support any benefit of neurofeedback on neurocognitive functioning in ADHD, possibly due to small sample sizes and other study limitations.
View Full Paper →Better than sleep: Theta neurofeedback training accelerates memory consolidation
Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback.
View Full Paper →Control of nucleus accumbens activity with neurofeedback
The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.
View Full Paper →Modulatory effects of aromatherapy massage intervention on electroencephalogram, psychological assessments, salivary cortisol and plasma brain-derived neurotrophic factor
OBJECTIVES: Aromatherapy massage is commonly used for the stress management of healthy individuals, and also has been often employed as a therapeutic use for pain control and alleviating psychological distress, such as anxiety and depression, in oncological palliative care patients. However, the exact biological basis of aromatherapy massage is poorly understood. Therefore, we evaluated here the effects of aromatherapy massage interventions on multiple neurobiological indices such as quantitative psychological assessments, electroencephalogram (EEG) power spectrum pattern, salivary cortisol and plasma brain-derived neurotrophic factor (BDNF) levels. DESIGN: A control group without treatment (n = 12) and aromatherapy massage group (n = 13) were randomly recruited. They were all females whose children were diagnosed as attention deficit hyperactivity disorder and followed up in the Department of Psychiatry, Jeju National University Hospital. Participants were treated with aromatherapy massage for 40 min twice per week for 4 weeks (8 interventions). RESULTS: A 4-week-aromatherapy massage program significantly improved all psychological assessment scores in the Stat-Trait Anxiety Index, Beck Depression Inventory and Short Form of Psychosocial Well-being Index. Interestingly, plasma BDNF levels were significantly increased after a 4 week-aromatherapy massage program. Alpha-brain wave activities were significantly enhanced and delta wave activities were markedly reduced following the one-time aromatherapy massage treatment, as shown in the meditation and neurofeedback training. In addition, salivary cortisol levels were significantly reduced following the one-time aromatherapy massage treatment. CONCLUSIONS: These results suggest that aromatherapy massage could exert significant influences on multiple neurobiological indices such as EEG pattern, salivary cortisol and plasma BDNF levels as well as psychological assessments.
View Full Paper →Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback
Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation in the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results demonstrate the feasibility of simultaneous self-regulation of both hemodynamic (rtfMRI) and electrophysiological (EEG) activities of the human brain. They suggest potential applications of rtfMRI-EEG-nf in the development of novel cognitive neuroscience research paradigms and enhanced cognitive therapeutic approaches for major neuropsychiatric disorders, particularly depression.
View Full Paper →Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children?
Attention deficit/hyperactivity disorder (ADHD) is present in 8% to 12% of children, and 4% of adults worldwide. Children with ADHD can have learning impairments, poor selfesteem, social dysfunction, and an increased risk of substance abuse, including cigarette smoking. Overall, the rate of treatment with medication for patients with ADHD has been increasing since 2008, with ≥ 2 million children now being treated with stimulants. The rise of adolescent prescription ADHD medication abuse has occurred along with a concomitant increase of stimulant medication availability. Of adults presenting with a substance use disorder (SUD), 20% to 30% have concurrent ADHD, and 20% to 40% of adults with ADHD have a history of SUD. Following a brief review of the etiology of ADHD, its diagnosis and treatment, we focus on the benefits of early and appropriate testing for a predisposition to ADHD. We suggest that by genotyping patients for a number of known, associated dopaminergic polymorphisms, especially at an early age, misdiagnoses and/or over-diagnosis can be reduced. Ethical and legal issues of early genotyping are considered. As many as 30% of individuals with ADHD are estimated to either have secondary side-effects or are not responsive to stimulant medication. We also consider the benefits of non-stimulant medication and alternative treatment modalities, which include diet, herbal medications, iron supplementation, and neurofeedback. With the goals of improving treatment of patients with ADHD and SUD prevention, we encourage further work in both genetic diagnosis and novel treatment approaches.
Neuromodulation Integrating rTMS and Neurofeedback for the Treatment of Autism Spectrum Disorder: An Exploratory Study
Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 years). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N = 20) and waitlist (WTL, N = 22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the WTL group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control WTL group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the WTL group
Quantitative EEG Neurofeedback for the Treatment of Pediatric Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorders, Learning Disorders, and Epilepsy
Quantitative electroencephalogram neurofeedback (qEEG NF) aims to improve brain functioning by targeting brain-wave correlates of functional deficits, based on the quantitative evaluation of the individual’s EEG rather than on traditional diagnostic categories or observable symptoms. qEEG NF for attention deficit/hyperactivity disorder, based on 12 randomized controlled trials (RCTs) with medium effect sizes (d 5 0.57–0.72), is recommended with reservations, and only as an adjunctive intervention after families have tried or at least considered conventional treatments. For autism, in 4 small RCTs, NF showed improvements in sustained attention, sensory/cognitive awareness, communication, sociability, set shifting/flexibility skills, and some long-term maintenance of treatment gains. NF may be recommended, again with reservations. For learning disorders, with 2 flawed studies, results of NF treatment suggest improvements in global and performance IQ, spelling, attention/impulsivity, and repeal of learning disorder diagnosis. Treatment gains were maintained over a period of 2 years of follow-up, but limited data do not support treatment recommendations. Pediatric epilepsy has no controlled studies, and preliminary data are not promising, but it might be considered for uncontrolled seizures unresponsive to anticonvulsants. qEEG NF treatment seems sensible and safe, but not easy or inexpensive (30–40 half-hour treatments, 2–3 times weekly). NF should be conducted by a well-trained professional with expertise in brain function beyond simply an ability to operate equipment, to enhance safety and optimize effectiveness.
View Full Paper →The Effects of a Single Session of Upper Alpha Neurofeedback for Cognitive Enhancement: A Sham-Controlled Study
The minimization of the non-specific factors of neurofeedback (NF) is an important aspect to further advance in the understanding of the effects of these types of procedures. This paper investigates the NF effects of a single session (25 min) of individual upper alpha enhancement following a sham-controlled experimental design (19 healthy participants). We measured immediate effects after the training and 1-day lasting EEG effects (eyes closed resting state and task-related activity), as well as the event-locked EEG effects during the execution of a mental rotation task. These metrics were computed in trained (upper alpha) and non-trained EEG parameters (lower alpha and lower beta). Several cognitive functions were assessed such as working memory and mental rotation abilities. The NF group showed increased upper alpha power after training in task-related activity (not significantly sustained 1 day after) and higher pre-stimulus power during the mental rotation task. Both groups improved cognitive performance, with a more prominent improvement for the NF group, however a single session seems to be insufficient to yield significant differences between groups. A higher number of training sessions seems necessary to achieve long-lasting effects on the electrophysiology and to enhance the behavioral effects.
View Full Paper →The Effects of Individual Upper Alpha Neurofeedback in ADHD: An Open-Label Pilot Study
Standardized neurofeedback (NF) protocols have been extensively evaluated in attention-deficit/hyperactivity disorder (ADHD). However, such protocols do not account for the large EEG heterogeneity in ADHD. Thus, individualized approaches have been suggested to improve the clinical outcome. In this direction, an open-label pilot study was designed to evaluate a NF protocol of relative upper alpha power enhancement in fronto-central sites. Upper alpha band was individually determined using the alpha peak frequency as an anchor point. 20 ADHD children underwent 18 training sessions. Clinical and neurophysiological variables were measured pre- and post-training. EEG was recorded pre- and post-training, and pre- and post-training trials within each session, in both eyes closed resting state and eyes open task-related activity. A power EEG analysis assessed long-term and within-session effects, in the trained parameter and in all the sensors in the (1–30) Hz spectral range. Learning curves over sessions were assessed as well. Parents rated a clinical improvement in children regarding inattention and hyperactivity/impulsivity. Neurophysiological tests showed an improvement in working memory, concentration and impulsivity (decreased number of commission errors in a continuous performance test). Relative and absolute upper alpha power showed long-term enhancement in task-related activity, and a positive learning curve over sessions. The analysis of within-session effects showed a power decrease (“rebound” effect) in task-related activity, with no significant effects during training trials. We conclude that the enhancement of the individual upper alpha power is effective in improving several measures of clinical outcome and cognitive performance in ADHD. This is the first NF study evaluating such a protocol in ADHD. A controlled evaluation seems warranted due to the positive results obtained in the current study.
View Full Paper →Connectivity-Guided EEG Biofeedback for Autism Spectrum Disorder: Evidence of Neurophysiological Changes
Recent studies have linked neural coherence deficits with impairments associated with Autism Spectrum Disorders (ASD). The current study tested the hypothesis that lowering neural hyperconnectivity would lead to decreases in autistic symptoms. Subjects underwent connectivity-guided EEG biofeedback, which has been previously found to enhance neuropsychological functioning and to lessen autistic symptoms. Significant reductions in neural coherence across frontotemporal regions and source localized power changes were evident in frontal, temporal, and limbic regions following this treatment. Concurrently, there were significant improvements on objective neuropsychological tests and parents reported positive gains (decreases in symptoms) following the treatment. These findings further validate EEG biofeedback as a therapeutic modality for autistic children and suggest that changes in coherence anomalies may be related to the mechanism of action.
View Full Paper →Neurofeedback of slow cortical potentials: neural mechanisms and feasibility of a placebo-controlled design in healthy adults
To elucidate basic mechanisms underlying neurofeedback we investigated neural mechanisms of training of slow cortical potentials (SCPs) by considering EEG- and fMRI. Additionally, we analyzed the feasibility of a double-blind, placebo-controlled design in NF research based on regulation performance during treatment sessions and self-assessment of the participants. Twenty healthy adults participated in 16 sessions of SCPs training: 9 participants received regular SCP training, 11 participants received sham feedback. At three time points (pre, intermediate, post) fMRI and EEG/ERP-measurements were conducted during a continuous performance test (CPT). Performance-data during the sessions (regulation performance) in the treatment group and the placebo group were analyzed. Analysis of EEG-activity revealed in the SCP group a strong enhancement of the CNV (electrode Cz) at the intermediate assessment, followed by a decrease back to baseline at the post-treatment assessment. In contrast, in the placebo group a continuous but smaller increase of the CNV could be obtained from pre to post assessment. The increase of the CNV in the SCP group at intermediate testing was superior to the enhancement in the placebo group. The changes of the CNV were accompanied by a continuous improvement in the test performance of the CPT from pre to intermediate to post assessment comparable in both groups. The change of the CNV in the SCP group is interpreted as an indicator of neural plasticity and efficiency while an increase of the CNV in the placebo group might reflect learning and improved timing due to the frequent task repetition. In the fMRI analysis evidence was obtained for neuronal plasticity. After regular SCP neurofeedback activation in the posterior parietal cortex decreased from the pre- to the intermediate measurement and increased again in the post measurement, inversely following the U-shaped increase and decrease of the tCNV EEG amplitude in the SCP-trained group. Furthermore, we found a localized increase of activity in the anterior cingulate cortex (ACC). Analyses of the estimation of treatment assignment by the participants indicate feasibility of blinding. Participants could not assess treatment assignment confidently. Participants of the SCP-group improved regulation capability during treatment sessions (in contrast to the participants of the placebo-group), although regulation capability appeared to be instable, presumably due to diminished confidence in the training (SCP- or sham-training). Our results indicate that SCP training in healthy adults might lead to functional changes in neuronal circuits serving cognitive preparation even after a limited number of sessions.
View Full Paper →Neurofeedback Practitioner Factors Related to Client Adherence
Introduction. This study systematically identified, extracted, and organized neurofeedback (NFB) practitioner factors connected to client adherence. It is important to understand this connection because increased adherence leads to improved NFB outcomes. A previous NFB conceptual framework and previous NFB client adherence findings were used to guide the current study. Method. One hundred and ninety-eight NFB practitioners completed online surveys gathering demographic information and ratings of practice behaviors and characteristics. For data set analyses, this study utilized SPSS version 20 for descriptive statistics, frequencies, means, standard deviations, ranges, Pearson product-moment correlation analyses, and independent samples t-tests. Results. Findings indicated that the following significantly correlated with client adherence: (a) practitioner technical and interpersonal techniques; (b) practitioner commitment to improving technical and interpersonal skills; and (c) practitioner confidence displayed during sessions. Results also indicated commitment correlated separately with techniques and confidence. These results suggested that practitioners engaging in self-NFB sessions reported significantly higher adherence rates compared to practitioners not engaging in self-NFB sessions. Findings demonstrated that practitioners conducting ≧ 40 monthly NFB sessions reported significantly higher adherence rates compared to practitioners conducting < 40 monthly NFB sessions. Conclusion. This study concluded that practitioners with commitment to improving their technical and interpersonal expertise leads to increased confidence during NFB sessions, ultimately improving adherence and outcome rates. When averaging 40 or more NFB sessions with clients per month, practitioners provide themselves with continued opportunities to practice current and new technical and interpersonal skills. By conducting self-NFB, practitioners develop their own descriptions of physiological regulation and share their own results with clients, which in turn builds rapport and increases therapeutic bonds leading to higher adherence.
View Full Paper →Neurofeedback Requires Better Evidence of Efficacy Before It Should Be Considered a Legitimate Treatment for ADHD: What is the Evidence for this Claim?
The article reviews the evidence for the claim that neurofeedback lacks sufficient evidence of efficacy and, therefore, cannot be considered a legitimate treatment for ADHD.
View Full Paper →Neurofeedback as a treatment for major depressive disorder--a pilot study
BACKGROUND: There is growing interest in neurofeedback as a treatment for major depressive disorder. Reduction of asymmetry of alpha-activity between left and right prefrontal areas with neurofeedback has been postulated as effective in earlier studies. Unfortunately, methodological shortcomings limit conclusions that can be drawn from these studies. In a pilot-study, we investigated the effectiveness of reduction of asymmetry of alpha-activity with neurofeedback in depressed participants with the use of a stringent methodological approach. METHODS: Nine participants meeting DSM-IV criteria for major depressive disorder were treated with a maximum of 30 neurofeedback-sessions, aimed at reducing asymmetry of alpha-activity, over a 10-week period. No changes in the use of antidepressants were allowed 6 weeks before and during the intervention. Changes in depressive symptomatology were assessed with the Quick Inventory of Depressive Symptoms, self-report version. RESULTS: We observed response in 1 and remission in 4 out of a total of 9 participants. The effectiveness appeared largest in female participants. The mean asymmetry of alpha-activity decreased significantly over sessions in a quadratic fashion. This decrease was associated with clinical response. CONCLUSIONS: This pilot study suggests that neurofeedback aimed at a reduction of frontal asymmetry of alpha-activity may be effective as a treatment for depression. However, this was an open label pilot study. Non-specific effects of the procedure and/or a beneficial natural course may have confounded the results. Randomized controlled trials will have to establish the efficacy of neurofeedback for depression. TRIAL REGISTRATION: Nederlands Trial Register NTR1629.
View Full Paper →When Discussing Neurofeedback, Does Modality Matter?
Over the years, several new models and variations of neurofeedback (NF) have been developed. As such, NF has grown from traditional amplitude based modalities to now include slow cortical potential NF, as well as various approaches grounded in QEEG technology, including z-score NF models. These differing modalities have important implications in terms of outcomes, the number of sessions required, and treatment specificity. This, in turn, impacts clinical practice, research, and marketing considerations. In an effort to gain some perspective for where the field is today, a comparative review is presented to illustrate the importance of noting what particular modality is being referenced when discussing NF.
View Full Paper →Neurofeedback training for opiate addiction: improvement of mental health and craving
Psychological improvements in patients with substance use disorders have been reported after neurofeedback treatment. However, neurofeedback has not been commonly accepted as a treatment for substance dependence. This study was carried out to examine the effectiveness of this therapeutic method for opiate dependence disorder. The specific aim was to investigate whether treatment leads to any changes in mental health and substance craving. In this experimental study with a pre-post test design, 20 opiate dependent patients undergoing Methadone or Buprenorphine maintenance treatment were examined and matched and randomized into two groups. While both experimental and control groups received their usual maintenance treatment, the experimental group received 30 sessions of neurofeedback treatment in addition. The neurofeedback treatment consisted of sensory motor rhythm training on Cz, followed by an alpha-theta protocol on Pz. Data from the general health questionnaire and a heroin craving questionnaire were collected before and after treatment. Multivariate analysis of covariance showed that the experimental group achieved improvement in somatic symptoms, depression, and total score in general mental health; and in anticipation of positive outcome, desire to use opioid, and relief from withdrawal of craving in comparison with the control group. The study supports the effectiveness of neurofeedback training as a therapeutic method in opiate dependence disorder, in supplement to pharmacotherapy.
View Full Paper →EEG biofeedback improves attentional bias in high trait anxiety individuals
BACKGROUND: Emotion-related attentional bias is implicated in the aetiology and maintenance of anxiety disorders. Electroencephalogram (EEG) biofeedback can obviously improve the anxiety disorders and reduce stress level, and can also enhance attention performance in healthy subjects. The present study examined the effects and mechanisms of EEG biofeedback training on the attentional bias of high trait anxiety (HTA) individuals toward negative stimuli. RESULTS: Event-related potentials were recorded while HTA (n=24) and nonanxious (n=21) individuals performed the color-word emotional Stroop task. During the emotional Stroop task, HTA participants showed longer reaction times and P300 latencies induced by negative words, compared to nonanxious participants.The EEG biofeedback significantly decreased the trait anxiety inventory score and reaction time in naming the color of negative words in the HTA group. P300 latencies evoked by negative stimuli in the EEG biofeedback group were significantly reduced after the alpha training, while no significant changes were observed in the sham biofeedback group after the intervention. CONCLUSION: The prolonged P300 latency is associated with attentional bias to negative stimuli in the HTA group. EEG biofeedback training demonstrated a significant improvement of negative emotional attentional bias in HTA individuals, which may be due to the normalization of P300 latency.
View Full Paper →Ready to Apply This Research?
Learn how QEEG brain mapping and neurofeedback can help with brain training. Fill out the form below and we'll share full programs and pricing information with you.
