stroke rehabilitation
Research Papers
Showing 6 of 9Interventions for perceptual disorders following stroke
BACKGROUND: Perception is the ability to understand information from our senses. It allows us to experience and meaningfully interact with our environment. A stroke may impair perception in up to 70% of stroke survivors, leading to distress, increased dependence on others, and poorer quality of life. Interventions to address perceptual disorders may include assessment and screening, rehabilitation, non-invasive brain stimulation, pharmacological and surgical approaches. OBJECTIVES: To assess the effectiveness of interventions aimed at perceptual disorders after stroke compared to no intervention or control (placebo, standard care, attention control), on measures of performance in activities of daily living. SEARCH METHODS: We searched the trials registers of the Cochrane Stroke Group, CENTRAL, MEDLINE, Embase, and three other databases to August 2021. We also searched trials and research registers, reference lists of studies, handsearched journals, and contacted authors. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of adult stroke survivors with perceptual disorders. We defined perception as the specific mental functions of recognising and interpreting sensory stimuli and included hearing, taste, touch, smell, somatosensation, and vision. Our definition of perception excluded visual field deficits, neglect/inattention, and pain. DATA COLLECTION AND ANALYSIS: One review author assessed titles, with two review authors independently screening abstracts and full-text articles for eligibility. One review author extracted, appraised, and entered data, which were checked by a second author. We assessed risk of bias (ROB) using the ROB-1 tool, and quality of evidence using GRADE. A stakeholder group, comprising stroke survivors, carers, and healthcare professionals, was involved in this review update. MAIN RESULTS: We identified 18 eligible RCTs involving 541 participants. The trials addressed touch (three trials, 70 participants), somatosensory (seven trials, 196 participants) and visual perception disorders (seven trials, 225 participants), with one (50 participants) exploring mixed touch-somatosensory disorders. None addressed stroke-related hearing, taste, or smell perception disorders. All but one examined the effectiveness of rehabilitation interventions; the exception evaluated non-invasive brain stimulation. For our main comparison of active intervention versus no treatment or control, one trial reported our primary outcome of performance in activities of daily living (ADL): Somatosensory disorders: one trial (24 participants) compared an intervention with a control intervention and reported an ADL measure. Touch perception disorder: no trials measuring ADL compared an intervention with no treatment or with a control intervention. Visual perception disorders: no trials measuring ADL compared an intervention with no treatment or control. In addition, six trials reported ADL outcomes in a comparison of active intervention versus active intervention, relating to somatosensation (three trials), touch (one trial) and vision (two trials). AUTHORS' CONCLUSIONS: Following a detailed, systematic search, we identified limited RCT evidence of the effectiveness of interventions for perceptual disorders following stroke. There is insufficient evidence to support or refute the suggestion that perceptual interventions are effective. More high-quality trials of interventions for perceptual disorders in stroke are needed. They should recruit sufficient participant numbers, include a 'usual care' comparison, and measure longer-term functional outcomes, at time points beyond the initial intervention period. People with impaired perception following a stroke should continue to receive neurorehabilitation according to clinical guidelines.
View Full Paper →The effect of mirror therapy can be improved by simultaneous robotic assistance
BACKGROUND: Standard mirror therapy (MT) is a well-established therapy regime for severe arm paresis after acquired brain injury. Bilateral robot-assisted mirror therapy (RMT) could be a solution to provide visual and somatosensory feedback simultaneously. OBJECTIVE: The study compares the treatment effects of MT with a version of robot-assisted MT where the affected arm movement was delivered through a robotic glove (RMT). METHODS: This is a parallel, randomized trial, including patients with severe arm paresis after stroke or traumatic brain injury with a Fugl-Meyer subscore hand/finger < 4. Participants received either RMT or MT in individual 30 minute sessions (15 sessions within 5 weeks). Main outcome parameter was the improvement in the Fugl-Meyer Assessment upper extremity (FMA-UE) motor score. Additionally, the Motricity Index (MI) and the FMA-UE sensation test as well as a pain scale were recorded. Furthermore, patients' and therapists' experiences with RMT were captured through qualitative tools. RESULTS: 24 patients completed the study. Comparison of the FMA-UE motor score difference values between the two groups revealed a significantly greater therapy effect in the RMT group than the MT group (p = 0.006). There were no significant differences for the MI (p = 0.108), the FMA-UE surface sensibility subscore (p = 0.403) as well as the FMA-UE position sense subscore (p = 0.192). In both groups the levels of pain remained stable throughout the intervention. No other adverse effects were observed. The RMT training was well accepted by patients and therapists. CONCLUSIONS: The study provides evidence that bilateral RMT achieves greater treatment benefit on motor function than conventional MT. The use of robotics seems to be a good method to implement passive co-movement in clinical practice. Our study further demonstrates that this form of training can feasibly and effectively be delivered in an inpatient setting.
View Full Paper →Clinical Effects of Immersive Multimodal BCI-VR Training after Bilateral Neuromodulation with rTMS on Upper Limb Motor Recovery after Stroke. A Study Protocol for a Randomized Controlled Trial
Background and Objectives: The motor sequelae after a stroke are frequently persistent and cause a high degree of disability. Cortical ischemic or hemorrhagic strokes affecting the cortico-spinal pathways are known to cause a reduction of cortical excitability in the lesioned area not only for the local connectivity impairment but also due to a contralateral hemisphere inhibitory action. Non-invasive brain stimulation using high frequency repetitive magnetic transcranial stimulation (rTMS) over the lesioned hemisphere and contralateral cortical inhibition using low-frequency rTMS have been shown to increase the excitability of the lesioned hemisphere. Mental representation techniques, neurofeedback, and virtual reality have also been shown to increase cortical excitability and complement conventional rehabilitation. Materials and Methods: We aim to carry out a single-blind, randomized, controlled trial aiming to study the efficacy of immersive multimodal Brain-Computer Interfacing-Virtual Reality (BCI-VR) training after bilateral neuromodulation with rTMS on upper limb motor recovery after subacute stroke (>3 months) compared to neuromodulation combined with conventional motor imagery tasks. This study will include 42 subjects in a randomized controlled trial design. The main expected outcomes are changes in the Motricity Index of the Arm (MI), dynamometry of the upper limb, score according to Fugl-Meyer for upper limb (FMA-UE), and changes in the Stroke Impact Scale (SIS). The evaluation will be carried out before the intervention, after each intervention and 15 days after the last session. Conclusions: This trial will show the additive value of VR immersive motor imagery as an adjuvant therapy combined with a known effective neuromodulation approach opening new perspectives for clinical rehabilitation protocols.
View Full Paper →Effect of BCI-Controlled Pedaling Training System With Multiple Modalities of Feedback on Motor and Cognitive Function Rehabilitation of Early Subacute Stroke Patients
Brain-computer interfaces (BCIs) are currently integrated into traditional rehabilitation interventions after stroke. Although BCIs bring many benefits to the rehabilitation process, their effects are limited since many patients cannot concentrate during training. Despite this outcome post-stroke motor-attention dual-task training using BCIs has remained mostly unexplored. This study was a randomized placebo-controlled blinded-endpoint clinical trial to investigate the effects of a BCI-controlled pedaling training system (BCI-PT) on the motor and cognitive function of stroke patients during rehabilitation. A total of 30 early subacute ischemic stroke patients with hemiplegia and cognitive impairment were randomly assigned to the BCI-PT or traditional pedaling training. We used single-channel Fp1 to collect electroencephalography data and analyze the attention index. The BCI-PT system timely provided visual, auditory, and somatosensory feedback to enhance the patient's participation to pedaling based on the real-time attention index. After 24 training sessions, the attention index of the experimental group was significantly higher than that of the control group. The lower limbs motor function (FMA-L) increased by an average of 4.5 points in the BCI-PT group and 2.1 points in the control group (P = 0.022) after treatments. The difference was still significant after adjusting for the baseline indicators ( β = 2.41 , 95%CI: 0.48-4.34, P = 0.024). We found that BCI-PT significantly improved the patient's lower limb motor function by increasing the patient's participation. (clinicaltrials.gov: NCT04612426).
View Full Paper →Neurofeedback Training for Cognitive and Motor Function Rehabilitation in Chronic Stroke: Two Case Reports
Stroke is a debilitating neurological condition which usually results in the abnormal electrical brain activity and the impairment of sensation, motor, or cognition functions. In this context, neurofeedback training, i.e., a non-invasive and relatively low cost technique that contributes to neuroplasticity and behavioral performance, might be promising for stroke rehabilitation. We intended to explore neurofeedback training on a 63-year-old male patient and a 77-year-old female patient with chronic stroke. Both of them had suffered from an ischemic stroke for rather long period (more than 3 years) and could not gain further improvement by traditional therapy. The neurofeedback training was designed to enhance alpha activity by 15 sessions distributed over 2 months, for the purpose of overall cognitive improvement and hopefully also motor function improvement for the female patient. We found that the two patients showed alpha enhancement during NFT compared to eyes open baseline within most sessions. Furthermore, both patients reduced their anxiety and depression level. The male patient showed an evolution in speech pattern in terms of naming, sentences completion and verbal fluency, while the female patient improved functionality of the march. These results suggested that alpha neurofeedback training could provide a spectrum of improvements, providing new hope for chronic stroke patients who could not gain further improvements through traditional therapies. © 2019 Nan, Dias and Rosa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
View Full Paper →Active Physical Practice Followed by Mental Practice Using BCI-Driven Hand Exoskeleton: A Pilot Trial for Clinical Effectiveness and Usability
Appropriately combining mental practice (MP) and physical practice (PP) in a poststroke rehabilitation is critical for ensuring a substantially positive rehabilitation outcome. Here, we present a rehabilitation protocol incorporating a separate active PP stage followed by MP stage, using a hand exoskeleton and brain-computer interface (BCI). The PP stage was mediated by a force sensor feedback-based assist-as-needed control strategy, whereas the MP stage provided BCI-based multimodal neurofeedback combining anthropomorphic visual feedback and proprioceptive feedback of the impaired hand extension attempt. A six week long clinical trial was conducted on four hemiparetic stroke patients (screened out of 16) with a left-hand disability. The primary outcome, motor functional recovery, was measured in terms of changes in grip-strength (GS) and action research arm test (ARAT) scores; whereas the secondary outcome, usability of the system was measured in terms of changes in mood, fatigue, and motivation on a visual-analog-scale. A positive rehabilitative outcome was found as the group mean changes from the baseline in the GS and ARAT were +6.38 kg and +5.66 accordingly. The VAS scale measurements also showed betterment in mood ( 1.38), increased motivation (+2.10) and reduced fatigue (0.98) as compared to the baseline. Thus, the proposed neurorehabilitation protocol is found to be promising both in terms of clinical effectiveness and usability.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss stroke rehabilitation and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →