Sleep Initiation and Maintenance Disorders
Research Papers
The Effectiveness of a Neurofeedback-Assisted Mindfulness Training Program Using a Mobile App on Stress Reduction in Employees: Randomized Controlled Trial
BACKGROUND: Mindfulness-based training programs have consistently shown efficacy in stress reduction. However, questions regarding the optimal duration and most effective delivery methods remain. OBJECTIVE: This research explores a 4-week neurofeedback-assisted mindfulness training for employees via a mobile app. The study's core query is whether incorporating neurofeedback can amplify the benefits on stress reduction and related metrics compared with conventional mindfulness training. METHODS: A total of 92 full-time employees were randomized into 3 groups: group 1 received mobile mindfulness training with neurofeedback assistance (n=29, mean age 39.72 years); group 2 received mobile mindfulness training without neurofeedback (n=32, mean age 37.66 years); and group 3 were given self-learning paper materials on stress management during their first visit (n=31, mean age 38.65 years). The primary outcomes were perceived stress and resilience scales. The secondary outcomes were mindfulness awareness, emotional labor, occupational stress, insomnia, and depression. Heart rate variability and electroencephalography were measured for physiological outcomes. These measurements were collected at 3 different times, namely, at baseline, immediately after training, and at a 4-week follow-up. The generalized estimating equation model was used for data analysis. RESULTS: The 4-week program showed significant stress reduction (Wald χ22=107.167, P<.001) and improvements in psychological indices including resilience, emotional labor, insomnia, and depression. A significant interaction was observed in resilience (time × group, Wald χ42=10.846, P=.02). The post hoc analysis showed a statistically significant difference between groups 1 (least squares mean [LSM] 21.62, SE 0.55) and 3 (LSM 19.90, SE 0.61) at the posttraining assessment (P=.008). Group 1 showed a significant improvement (P<.001) at the posttraining assessment, with continued improvements through the 1-month follow-up assessment period (LSM 21.55, SE 0.61). Physiological indices were analyzed only for data of 67 participants (22 in group 1, 22 in group 2, and 23 in group 3) due to the data quality. The relaxation index (ratio of alpha to high beta power) from the right electroencephalography channel showed a significant interaction (time × group, Wald χ22=6.947, P=.03), with group 1 revealing the highest improvement (LSM 0.43, SE 0.15) compared with groups 2 (LSM -0.11, SE 0.10) and 3 (LSM 0.12, SE 0.10) at the 1-month follow-up assessment. CONCLUSIONS: The study demonstrated that the neurofeedback-assisted group achieved superior outcomes in resilience and relaxation during the 4-week mobile mindfulness program. Further research with larger samples and long-term follow-up is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT03787407; https://clinicaltrials.gov/ct2/show/NCT03787407.
View Full Paper →Evaluation of the URGOnight Tele-neurofeedback Device: An Open-label Feasibility Study with Follow-up
SMR neurofeedback shows potential as a therapeutic tool for reducing sleep problems. It is hypothesized that SMR neurofeedback trains the reticulo-thalamocortical-cortical circuit involved in sleep-spindle generation. As such, strengthening this circuit is hypothesized to reduce sleep problems. The current study aims to investigate the effectiveness of a home-based device that uses SMR neurofeedback to help reduce sleep problems. Thirty-seven participants reporting sleep problems received the SMR neurofeedback-based program for 40 (n = 21) or 60 (n = 16) sessions. The Pittsburgh Sleep Quality Index (PSQI) and Holland Sleep Disorders Questionnaire (HSDQ) were assessed at baseline, session 20, outtake, and follow-up (FU). Actigraphy measurements were taken at baseline, session 20, and outtake. Significant improvements were observed in PSQI Total (d = 0.78), PSQI Sleep Duration (d = 0.52), HSDQ Total (d = 0.80), and HSDQ Insomnia (d = 0.79). Sleep duration (based on PSQI) increased from 5.3 h at baseline to 5.8 after treatment and 6.0 h. at FU. No effects of number of sessions were found. Participants qualified as successful SMR-learners demonstrated a significantly larger gain in sleep duration (d = 0.86 pre-post; average gain = 1.0 h.) compared to non-learners. The home-based SMR tele-neurofeedback device shows the potential to effectively reduce sleep problems, with SMR-learners demonstrating significantly better improvement. Although randomized controlled trials (RCTs) are needed to further elucidate the specific effect of this device on sleep problems, this is the first home-based SMR neurofeedback device using dry electrodes demonstrating effectiveness and feasibility.
View Full Paper →Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia
See Thibault et al. (doi:10.1093/awx033) for a scientific commentary on this article.Neurofeedback training builds upon the simple concept of instrumental conditioning, i.e. behaviour that is rewarded is more likely to reoccur, an effect Thorndike referred to as the 'law of effect'. In the case of neurofeedback, information about specific electroencephalographic activity is fed back to the participant who is rewarded whenever the desired electroencephalography pattern is generated. If some kind of hyperarousal needs to be addressed, the neurofeedback community considers sensorimotor rhythm neurofeedback as the gold standard. Earlier treatment approaches using sensorimotor-rhythm neurofeedback indicated that training to increase 12-15 Hz sensorimotor rhythm over the sensorimotor cortex during wakefulness could reduce attention-deficit/hyperactivity disorder and epilepsy symptoms and even improve sleep quality by enhancing sleep spindle activity (lying in the same frequency range). In the present study we sought to critically test whether earlier findings on the positive effect of sensorimotor rhythm neurofeedback on sleep quality and memory could also be replicated in a double-blind placebo-controlled study on 25 patients with insomnia. Patients spent nine polysomnography nights and 12 sessions of neurofeedback and 12 sessions of placebo-feedback training (sham) in our laboratory. Crucially, we found both neurofeedback and placebo feedback to be equally effective as reflected in subjective measures of sleep complaints suggesting that the observed improvements were due to unspecific factors such as experiencing trust and receiving care and empathy from experimenters. In addition, these improvements were not reflected in objective electroencephalographic-derived measures of sleep quality. Furthermore, objective electroencephalographic measures that potentially reflected mechanisms underlying the efficacy of neurofeedback such as spectral electroencephalographic measures and sleep spindle parameters remained unchanged following 12 training sessions. A stratification into 'true' insomnia patients and 'insomnia misperceivers' (subjective, but no objective sleep problems) did not alter the results. Based on this comprehensive and well-controlled study, we conclude that for the treatment of primary insomnia, neurofeedback does not have a specific efficacy beyond unspecific placebo effects. Importantly, we do not find an advantage of neurofeedback over placebo feedback, therefore it cannot be recommended as an alternative to cognitive behavioural therapy for insomnia, the current (non-pharmacological) standard-of-care treatment. In addition, our study may foster a critical discussion that generally questions the effectiveness of neurofeedback, and emphasizes the importance of demonstrating neurofeedback efficacy in other study samples and disorders using truly placebo and double-blind controlled trials.
View Full Paper →Open-Loop Neurofeedback Audiovisual Stimulation: A Pilot Study of Its Potential for Sleep Induction in Older Adults
This pilot study tested the efficacy of a 30-min audio-visual stimulation (AVS) program for the treatment of chronic insomnia in older adults. Chronic insomnia has been conceptualized as entailing increased cortical high frequency EEG activity at sleep onset and during NREM sleep. We hypothesized that an AVS program gradually descending from 8 to 1 Hz would potentially reduce the excessive cortical activation that is thought to contribute to difficulties with initiating and maintaining sleep. Accordingly, we conducted an intervention study of AVS using a pre-post design. Eight older adults (88 ± 8.7 years) complaining of chronic insomnia self-administered a 30-min AVS program nightly at bedtime for one month. Sleep was assessed at baseline and throughout the 4-week intervention. After using AVS for 4 weeks, significant improvement was reported in insomnia symptoms (ISI, p = 0.002) and sleep quality (PSQI, p = 0.004); with moderate to large effect sizes (Partial Eta2: 0.20-0.55)(Cohen's d: 0.7-2.3). The training effect (self-reported sleep improvement) was observed at the end of week one and persisted through the 1-month intervention. The results from this pilot study suggest that further exploration of AVS as a treatment for insomnia is warranted.
View Full Paper →Enhancing sleep quality and memory in insomnia using instrumental sensorimotor rhythm conditioning
EEG recordings over the sensorimotor cortex show a prominent oscillatory pattern in a frequency range between 12 and 15 Hz (sensorimotor rhythm, SMR) under quiet but alert wakefulness. This frequency range is also abundant during sleep, and overlaps with the sleep spindle frequency band. In the present pilot study we tested whether instrumental conditioning of SMR during wakefulness can enhance sleep and cognitive performance in insomnia. Twenty-four subjects with clinical symptoms of primary insomnia were tested in a counterbalanced within-subjects-design. Each patient participated in a SMR- as well as a sham-conditioning training block. Polysomnographic sleep recordings were scheduled before and after the training blocks. Results indicate a significant increase of 12-15 Hz activity over the course of ten SMR training sessions. Concomitantly, the number of awakenings decreased and slow-wave sleep as well as subjective sleep quality increased. Interestingly, SMR-training enhancement was also found to be associated with overnight memory consolidation and sleep spindle changes indicating a beneficial cognitive effect of the SMR training protocol for SMR "responders" (16 out of 24 participants). Although results are promising it has to be concluded that current results are of a preliminary nature and await further proof before SMR-training can be promoted as a non-pharmacological approach for improving sleep quality and memory performance.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss sleep initiation and maintenance disorders and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →