seizure
Research Papers
Showing 6 of 7The use of EEG neurofeedback in the rehabilitation of childhood epilepsy
Epilepsy is one of the most common serious neurological disorders. Epilepsy is characterized by a long-term risk of recurring seizures. The most common are seizures. These seizures can be of different types, depending on which part of the brain is involved and the age of the person affected. People suffering from epilepsy have an increased risk of death. Various treatments are used, but the results are not always effective. Neurofeedback is used in the treatment of many diseases, thanks to this therapy the patient learns to consciously control the functions of the body. The aim of this study is to determine the state of the literature on the effectiveness of EEGv (electroencephalography) biofeedback on patients with childhood epilepsy. Epilepsy is a chronic, incurable disease involving disruptions of electrical discharges in the brain. Neurofeedback therapy, based on brain wave training, is fully justified in this matter. The English-language literature from 2014-2021 was reviewed to illustrate the state of knowledge on the above-mentioned topic. 51 papers focused on various aspects of the science of the brain and its disorders, especially epilepsy, were qualified for further analysis. It was found that the state of the literature is satisfactory to conduct independent research on its basis and it was assumed that the development of this form of therapy is an expected issue.
View Full Paper →Impact of sensorimotor rhythm neurofeedback on quality of life in patients with medically-refractory seizures
Introduction: Published studies suggest that augmentation of the sensorimotor rhythm (SMR), a commonlyused neurofeedback protocol for patients with epilepsy, changes thalamocortical regulatory systems and increases cortical excitation thresholds. Recent meta-analyses showed that at least 50% of patients with medically refractory epilepsy had a post-therapy reduction in seizure frequency after neurofeedback training. However, data on neurofeedback outcomes outside of seizure frequency are limited. Methods: The records for all consecutive patients trained using SMR neurofeedback in the University of Colorado Neurofeedback Clinic prior to March 2015 (n = 9) were retrospectively reviewed, abstracted, and analyzed. Patients completed the Quality of Life in Epilepsy-31 (QOLIE-31) survey as a part of their clinic intake interview and at intervals throughout their training. Results: 214 total training sessions were reviewed. The average total QOLIE-31 baseline score in our patients was 49.3 ± 8.8. Seven patients completed follow-up QOLIE-31 surveys with an average score of 54.9 ± 6.5. Seventy-eight percent of the patients had improvement in their QOLIE-31 scores with training. The largest absolute improvements were in the seizure worry and cognitive subscores of the QOLIE-31. Conclusion: In this small case series, SMR neurofeedback training modestly improved short-term follow-up QOLIE-31 scores in patients with epilepsy
View Full Paper →Z-score LORETA Neurofeedback as a Potential Therapy for Patients with Seizures and Refractory Epilepsy
Approximately 30 % of epilepsy patients are resistant to conventional medical therapy. Therefore, alternative forms of treatment are needed to improve efficiency of these therapeutic regimens. Neurofeedback (NFB) has been becoming recognized as one of the promising therapies improving control of medically refractory epilepsy cases. This multi-case paper describes our experience with LORETA Z-score NFB as a tool for control of patients with seizures.
View Full Paper →Clinical Advantages of Quantitative Electroencephalogram (QEEG)–Electrical Neuroimaging Application in General Neurology Practice
QEEG-electrical neuroimaging has been underutilized in general neurology practice for uncertain reasons. Recent advances in computer technology have made this electrophysiological testing relatively inexpensive. Therefore, this study was conducted to evaluate the clinical usefulness of QEEG/electrical neuroimaging in neurological practice. Over the period of approximately 6 months, 100 consecutive QEEG recordings were analyzed for potential clinical benefits. The patients who completed QEEG were divided into 5 groups based on their initial clinical presentation. The main groups included patients with seizures, headaches, post-concussion syndrome, cognitive problems, and behavioral dysfunctions. Subsequently, cases were reviewed and a decision was made as to whether QEEG analysis contributed to the diagnosis and/or furthered patient’s treatment. Selected and representative cases from each group are presented in more detail, including electrical neuroimaging with additional low-resolution electromagnetic tomography analysis or using computerized cognitive testing. Statistical analysis showed that QEEG analysis contributed to 95% of neurological cases, which indicates great potential for wider application of this modality in general neurology. Many patients also began neurotherapy, depending on the patient’s desire to be involved in this treatment modality.
View Full Paper →Meta-Analysis of EEG Biofeedback in Treating Epilepsy
About one third of patients with epilepsy do not benefit from medical treatment. For these patients electroencephalographic (EEG) biofeedback is a viable alternative. EEG biofeedback, or neurofeedback, normalizes or enhances EEG activity by means of operant conditioning. While dozens of scientific reports have been published on neurofeedback for seizure disorder, most have been case series with too few subjects to establish efficacy. The purpose of this paper is to meta-analyze existing research on neurofeedback and epilepsy. We analyzed every EEG biofeedback study indexed in MedLine, PsychInfo, and PsychLit databases between 1970 and 2005 on epilepsy that provided seizure frequency change in response to feedback. Sixty-three studies have been published, 10 of which provided enough outcome information to be included in a meta-analysis. All studies consisted of patients whose seizures were not controlled by medical therapies, which is a very important factor to keep in mind when interpreting the results. Nine of 10 studies reinforced sensorimotor rhythms (SMR) while 1 study trained slow cortical potentials (SCP). All studies reported an overall mean decreased seizure incidence following treatment and 64 out of 87 patients (74%) reported fewer weekly seizures in response to EEG biofeedback. Treatment effect was mean log (post/pre) where pre and post represent number of seizures per week prior to treatment and at final evaluation, respectively. Due to prevalence of small groups, Hedges's g was computed for effect size. As sample heterogeneity was possible (Q test, p=.18), random effects were assumed and the effect of intervention was −0.233, SE= 0.057, z −4.11, p<.001. Based on this meta-analysis, EEG operant conditioning was found to produce a significant reduction on seizure frequency. This finding is especially noteworthy given the patient group, individuals who had been unable to control their seizures with medical treatment.
View Full Paper →Neurofeedback treatment of epilepsy: from basic rationale to practical application
The treatment of epilepsy through operant conditioning of the sensorimotor rhythm electroencephalogram has a 35-year history. Neurophysiological studies have shown that this phasic oscillation reflects an inhibitory state of the sensorimotor system. Operant learning of sensory motor rhythm production results in an upregulation of excitation thresholds within the thalamocortical sensory and motor circuitry, which in turn is associated with reduced susceptibility to seizures. The clinical benefits derived from this neurofeedback training protocol, particularly in patients that are nonresponsive to pharmacotherapy, have been documented in many independent laboratories. Recent advances in computer technology have resulted in the availability of relatively inexpensive high-quality equipment for the application of neurofeedback therapy, thus presenting a viable and promising treatment alternative to the interested clinician.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss seizure and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →