Insomnia disorder

Research Papers

Real-Time fMRI Neurofeedback Training Changes Brain Degree Centrality and Improves Sleep in Chronic Insomnia Disorder: A Resting-State fMRI Study

Li, Xiaodong, Li, Zhonglin, Zou, Zhi, Wu, Xiaolin, Gao, Hui, Wang, Caiyun, Zhou, Jing, Qi, Fei, Zhang, Miao, He, Junya, Qi, Xin, Yan, Fengshan, Dou, Shewei, Zhang, Hongju, Tong, Li, Li, Yongli (2022) · Frontiers in Molecular Neuroscience

Background Chronic insomnia disorder (CID) is considered a major public health problem worldwide. Therefore, innovative and effective technical methods for studying the pathogenesis and clinical comprehensive treatment of CID are urgently needed. Methods Real-time fMRI neurofeedback (rtfMRI-NF), a new intervention, was used to train 28 patients with CID to regulate their amygdala activity for three sessions in 6 weeks. Resting-state fMRI data were collected before and after training. Then, voxel-based degree centrality (DC) method was used to explore the effect of rtfMRI-NF training. For regions with altered DC, we determined the specific connections to other regions that most strongly contributed to altered functional networks based on DC. Furthermore, the relationships between the DC value of the altered regions and changes in clinical variables were determined. Results Patients with CID showed increased DC in the right postcentral gyrus, Rolandic operculum, insula, and superior parietal gyrus and decreased DC in the right supramarginal gyrus, inferior parietal gyrus, angular gyrus, middle occipital gyrus, and middle temporal gyrus. Seed-based functional connectivity analyses based on the altered DC regions showed more details about the altered functional networks. Clinical scores in Pittsburgh sleep quality index, insomnia severity index (ISI), Beck depression inventory, and Hamilton anxiety scale decreased. Furthermore, a remarkable positive correlation was found between the changed ISI score and DC values of the right insula. Conclusions This study confirmed that amygdala-based rtfMRI-NF training altered the intrinsic functional hubs, which reshaped the abnormal functional connections caused by insomnia and improved the sleep of patients with CID. These findings contribute to our understanding of the neurobiological mechanism of rtfMRI-NF in insomnia treatment. However, additional double-blinded controlled clinical trials with larger sample sizes need to be conducted to confirm the effect of rtfMRI-NF from this initial study.

View Full Paper →

EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis

Zhao, Wenrui, Van Someren, Eus J. W., Li, Chenyu, Chen, Xinyuan, Gui, Wenjun, Tian, Yu, Liu, Yunrui, Lei, Xu (2021) · Sleep Medicine Reviews

Insomnia disorder (ID) has become the second-most common mental disorder. Despite burgeoning evidence for increased high-frequency electroencephalography (EEG) activity and cortical hyperarousal in ID, the detailed spectral features of this disorder during wakefulness and different sleep stages remain unclear. Therefore, we adopted a meta-analytic approach to systematically assess existing evidence on EEG spectral features in ID. Hedges's g was calculated by 148 effect sizes from 24 studies involving 977 participants. Our results demonstrate that, throughout wakefulness and sleep, patients with ID exhibited increased beta band power, although such increases sometimes extended into neighboring frequency bands. Patients with ID also exhibited increased theta and gamma power during wakefulness, as well as increased alpha and sigma power during rapid eye movement (REM) sleep. In addition, ID was associated with decreased delta power and increased theta, alpha, and sigma power during NREM sleep. The EEG measures of absolute and relative power have similar sensitivity in detecting spectral features of ID during wakefulness and REM sleep; however, relative power appeared to be a more sensitive biomarker during NREM sleep. Our study is the first statistics-based review to quantify EEG power spectra across stages of sleep and wakefulness in patients with ID.

View Full Paper →

Ready to Optimize Your Brain?

Schedule a free consultation to discuss insomnia disorder and how neurofeedback training can help

* Required fields