
creativity
Blog Articles

Research Papers
Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children
We earlier reported benefits for creativity in rehearsed music performance from alpha/theta (A/T) neurofeedback in conservatoire studies (Egner & Gruzelier, 2003) which were not found with SMR, Beta1, mental skills, aerobics or Alexander training, or in standby controls. Here the focus was the impact on novice music performance. A/T and SMR training were compared in 11-year old school children along with non-intervention controls with outcome measures not only of rehearsed music performance but also of creative improvisation, as well as sustained attention and phenomenology. Evidence of effective learning in the school setting was obtained for A/T and SMR/beta2 ratios. Preferential benefits from A/T for rehearsed music performance were replicated in children for technique and communication ratings. Benefits extended to creativity and communication ratings for creative improvisation which were shared with SMR training, disclosing an influence of SMR on unrehearsed music performance at a novice level with its greater cognitive demands. In a first application of A/T for improving sustained attention (TOVA), it was found to be more successful than SMR training, with a notable reduction in commission errors in the children, 15/33 of whom had attention indices in the ADHD range. Phenomenological reports were in favour of neurofeedback and well-being benefits. Implementing neurofeedback in the daily school setting proved feasible and holds pedagogic promise.
View Full Paper →Effects of SMR and Theta/Beta Neurofeedback on Reaction Times, Spatial Abilities, and Creativity
Neurofeedback training (NFT) has been demonstrated to be a useful, inexpensive, nonpharmacological tool in the treatment of attention deficit hyperactivity disorder and epilepsy in humans. Different neurofeedback training protocols have been associated with positive effects on performance in sports, creativity, memory, and simple reaction time tasks. During NFT, individuals receive visual or acoustic feedback of their brain oscillations, which are recorded by electroencephalogram (EEG). Through operant conditioning that employs this feedback, the individuals subsequently may be able to modulate the respective oscillations. The most widely used training protocols focus on either the enhancement of the sensorimotor rhythm (SMR; 12-15Hz) or modulation of the theta/beta ratio (TBR; theta: 4.5-7.5 Hz, beta: 17-21 Hz). We investigated whether healthy individuals are able to learn, within 30 NFT sessions, how to modulate either the SMR (n=13) or the TBR (n=14), and whether such modulation can lead to an enhancement in different cognitive or creative tasks. A control group (n=14) that received NFT with daily changing frequency bands and instructions was included for comparison. Although neither the TBR group nor the control group was able to modulate the EEG in the trained frequency bands, the SMR group was successful in doing so. In addition, only the SMR group was able to attain significantly better results in simple and choice reaction time tasks and a spatial rotation task after training as compared to the two other groups. No effects of NFT were found for the other attention-related tasks or for creative tasks. A series of 30 SMR training sessions can increase the ability to increase SMR amplitudes and therefore may have a future application in settings where the cultivation of fast reactions and good visuospatial abilities are relevant (e.g., in sports).
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss creativity and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →