ADHD-rating scale
Research Papers
To spindle or not to spindle: A replication study into spindling excessive beta as a transdiagnostic EEG feature associated with impulse control
Background Frontocentral Spindling Excessive Beta (SEB), a spindle-like beta-activity observed in the electroencephalogram (EEG), has been transdiagnostically associated with more problems with impulse control and sleep maintenance. The current study aims to replicate and elaborate on these findings. Methods Participants reporting sleep problems (n = 31) or Attention-Deficit/Hyperactivity Disorder (ADHD) symptoms (n = 48) were included. Baseline ADHD-Rating Scale (ADHD-RS), Pittsburgh Sleep Quality Index (PSQI), Holland Sleep Disorder Questionnaire (HSDQ), and EEG were assessed. Analyses were confined to adults with frontocentral SEB. Results Main effects of SEB showed more impulse control problems (d = 0.87) and false positive errors (d = 0.55) in participants with SEB. No significant associations with sleep or interactions with Sample were observed. Discussion This study partially replicates an earlier study and demonstrates that participants exhibiting SEB report more impulse control problems, independent of diagnosis. Future studies should focus on automating SEB classification and further investigate the transdiagnostic nature of SEB.
View Full Paper →A multicenter effectiveness trial of QEEG-informed neurofeedback in ADHD: Replication and treatment prediction
Introduction: Quantitative Electroencephalogram-(QEEG-)informed neurofeedback is a method in which standard neurofeedback protocols are assigned, based on individual EEG characteristics in order to enhance effectiveness. Thus far clinical effectiveness data have only been published in a small sample of 21 ADHD patients. Therefore, this manuscript aims to replicate this effectiveness in a new sample of 114 patients treated with QEEG-informed neurofeedback, from a large multicentric dataset and to investigate potential predictors of neurofeedback response. Methods: A sample of 114 patients were included as a replication sample. Patients were treated with standard neurofeedback protocols (Sensori-Motor-Rhythm (SMR), Theta-Beta (TBR), or Slow Cortical Potential (SCP) neurofeedback), in combination with coaching and sleep hygiene advice. The ADHD Rating Scale (ADHD-RS) and Pittsburgh Sleep Quality Index (PSQI) were assessed at baseline, every 10th session, and at outtake. Holland Sleep Disorder Questionnaire (HSDQ) was assessed at baseline and outtake. Response was defined as ≥25% reduction (R25), ≥50% reduction (R50), and remission. Predictive analyses were focused on predicting remission status. Results: In the current sample, response rates were 85% (R25), 70% (R50), and remission was 55% and clinical effectiveness was not significantly different from the original 2012 sample. Non-remitters exhibited significantly higher baseline hyperactivity ratings. Women who remitted had significantly shorter P300 latencies and boys who remitted had significantly lower iAPF's. Discussion: In the current sample, clinical effectiveness was replicated, suggesting it is possible to assign patients to a protocol based on their individual baseline QEEG to enhance signal-to-noise ratio. Furthermore, remitters had lower baseline hyperactivity scores. Likewise, female remitters had shorter P300 latencies, whereas boys who remitted have a lower iAPF. Our data suggests initial specificity in treatment allocation, yet further studies are needed to replicate the predictors of neurofeedback remission.
View Full Paper →Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study
Neurofeedback (NF) has been identified as a “possibly efficacious” treatment in current evidence-based reviews; therefore, more research is needed to determine its effects. The current study examined the potential additive effect of NF for children diagnosed with ADHD beginning a medication trial first. Thirty-six children (6–12 years) with a DSM-IV-TR diagnosis of ADHD were randomly assigned to an NF with medication (NF condition) or a medication only condition. Children in the NF group attended 20 twice-weekly sessions. Outcome measures included individual cognitive performance scores (ADS, K-WISC-III), ADHD rating scores completed by their parents (ARS, CRS) and brainwave indices of left and right hemispheres before and after NF treatment. Significant additive treatment effect in any of the symptom variables was found and a reduction of theta waves in both the right and left hemispheres was recorded in NF condition participants. However our randomized controlled study could not demonstrate superior effects of combined NF on intelligent functioning compared to the medication treatment only. This study suggested any possible evidence of positive and additive treatment effects of NF on brainwaves and ADHD symptomatology.
View Full Paper →Behavioral effects of neurofeedback in adolescents with ADHD: a randomized controlled trial
Neurofeedback has been proposed as a potentially effective intervention for reducing Attention Deficit Hyperactivity Disorder (ADHD) symptoms. However, it remains unclear whether neurofeedback is of additional value to treatment as usual (TAU) for adolescents with clinical ADHD symptoms. Using a multicenter parallel-randomized controlled trial design, adolescents with ADHD symptoms were randomized to receive either a combination of TAU and neurofeedback (NFB + TAU, n = 45) or TAU-only (n = 26). Randomization was computer generated and stratified for age group (ages 12 through 16, 16 through 20, 20 through 24). Neurofeedback treatment consisted of approximately 37 sessions of theta/sensorimotor rhythm (SMR)-training on the vertex (Cz). Primary behavioral outcome measures included the ADHD-rating scale, Youth Self Report, and Child Behavior Checklist all assessed pre- and post-intervention. Behavioral problems decreased equally for both groups with medium to large effect sizes, range of partial η2 = 0.08–0.31, p < 0.05. Hence, the combination of NFB + TAU was not more effective than TAU-only on the behavioral outcome measures. In addition, reported adverse effects were similar for both groups. On behavioral outcome measures, the combination of neurofeedback and TAU was as effective as TAU-only for adolescents with ADHD symptoms. Considering the absence of additional behavioral effects in the current study, in combination with the limited knowledge of specific treatment effects, it is questionable whether theta/SMR neurofeedback for adolescents with ADHD and comorbid disorders in clinical practice should be used. Further research is warranted to investigate possible working mechanisms and (long-term) specific treatment effects of neurofeedback.
View Full Paper →Ready to Optimize Your Brain?
Schedule a free consultation to discuss adhd-rating scale and how neurofeedback training can help
Or call us directly at 855-88-BRAIN
View Programs & Pricing →